Suppr超能文献

基于 AR 模型和支持向量机的实时癫痫发作预测。

Real-time epileptic seizure prediction using AR models and support vector machines.

机构信息

Department of Systems and Informatics, University of Florence, Florence 50139, Italy.

出版信息

IEEE Trans Biomed Eng. 2010 May;57(5):1124-32. doi: 10.1109/TBME.2009.2038990. Epub 2010 Feb 17.

Abstract

This paper addresses the prediction of epileptic seizures from the online analysis of EEG data. This problem is of paramount importance for the realization of monitoring/control units to be implanted on drug-resistant epileptic patients. The proposed solution relies in a novel way on autoregressive modeling of the EEG time series and combines a least-squares parameter estimator for EEG feature extraction along with a support vector machine (SVM) for binary classification between preictal/ictal and interictal states. This choice is characterized by low computational requirements compatible with a real-time implementation of the overall system. Moreover, experimental results on the Freiburg dataset exhibited correct prediction of all seizures (100 % sensitivity) and, due to a novel regularization of the SVM classifier based on the Kalman filter, also a low false alarm rate.

摘要

本文针对从 EEG 数据的在线分析中预测癫痫发作这一问题展开研究。对于为耐药性癫痫患者植入的监测/控制单元的实现,这一问题至关重要。本文提出的解决方案依赖于 EEG 时间序列的自回归建模,并结合最小二乘参数估计器用于 EEG 特征提取,同时采用支持向量机(SVM)进行癫痫发作前/发作期和发作间期的二分类。这种选择的特点是计算要求低,与整个系统的实时实现兼容。此外,在弗莱堡数据集上的实验结果表明,所有癫痫发作都得到了正确预测(敏感性为 100%),并且由于基于卡尔曼滤波器的 SVM 分类器的新正则化,假警报率也很低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验