Law Andrew J, Sharma Gaurav, Schieber Marc H
Biomedical Engineering Department at the University of Rochester, Rochester, NY, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3293-6. doi: 10.1109/IEMBS.2010.5627253.
We present a methodology for detecting effective connections between simultaneously recorded neurons using an information transmission measure to identify the presence and direction of information flow from one neuron to another. Using simulated and experimentally-measured data, we evaluate the performance of our proposed method and compare it to the traditional transfer entropy approach. In simulations, our measure of information transmission outperforms transfer entropy in identifying the effective connectivity structure of a neuron ensemble. For experimentally recorded data, where ground truth is unavailable, the proposed method also yields a more plausible effective connectivity structure than transfer entropy.
我们提出了一种方法,用于使用信息传输度量来检测同时记录的神经元之间的有效连接,以识别从一个神经元到另一个神经元的信息流的存在和方向。使用模拟数据和实验测量数据,我们评估了所提出方法的性能,并将其与传统的转移熵方法进行比较。在模拟中,我们的信息传输度量在识别神经元集合的有效连接结构方面优于转移熵。对于无法获得真实情况的实验记录数据,所提出的方法也比转移熵产生更合理的有效连接结构。