Suppr超能文献

新皮层柱计算机模型中的突触信息传递。

Synaptic information transfer in computer models of neocortical columns.

作者信息

Neymotin Samuel A, Jacobs Kimberle M, Fenton André A, Lytton William W

机构信息

Biomedical Engineering, SUNY Downstate Medical Center, 450 Clarkson Avenue, P.O. Box 31, Brooklyn, NY 11203-2098, USA.

出版信息

J Comput Neurosci. 2011 Feb;30(1):69-84. doi: 10.1007/s10827-010-0253-4. Epub 2010 Jun 17.

Abstract

Understanding the direction and quantity of information flowing in neuronal networks is a fundamental problem in neuroscience. Brains and neuronal networks must at the same time store information about the world and react to information in the world. We sought to measure how the activity of the network alters information flow from inputs to output patterns. Using neocortical column neuronal network simulations, we demonstrated that networks with greater internal connectivity reduced input/output correlations from excitatory synapses and decreased negative correlations from inhibitory synapses, measured by Kendall's τ correlation. Both of these changes were associated with reduction in information flow, measured by normalized transfer entropy (nTE). Information handling by the network reflected the degree of internal connectivity. With no internal connectivity, the feedforward network transformed inputs through nonlinear summation and thresholding. With greater connectivity strength, the recurrent network translated activity and information due to contribution of activity from intrinsic network dynamics. This dynamic contribution amounts to added information drawn from that stored in the network. At still higher internal synaptic strength, the network corrupted the external information, producing a state where little external information came through. The association of increased information retrieved from the network with increased gamma power supports the notion of gamma oscillations playing a role in information processing.

摘要

理解神经元网络中信息流的方向和数量是神经科学中的一个基本问题。大脑和神经元网络必须同时存储有关世界的信息并对世界中的信息做出反应。我们试图测量网络活动如何改变从输入到输出模式的信息流。通过新皮层柱神经元网络模拟,我们证明,通过肯德尔τ相关性测量,具有更强内部连接性的网络降低了兴奋性突触的输入/输出相关性,并减少了抑制性突触的负相关性。这两种变化都与通过归一化转移熵(nTE)测量的信息流减少有关。网络的信息处理反映了内部连接的程度。在没有内部连接的情况下,前馈网络通过非线性求和和阈值化来转换输入。随着连接强度的增加,循环网络由于内在网络动力学的活动贡献而转换活动和信息。这种动态贡献相当于从网络中存储的信息中提取的额外信息。在更高的内部突触强度下,网络会破坏外部信息,产生一种几乎没有外部信息通过的状态。从网络中检索到的信息增加与γ功率增加之间的关联支持了γ振荡在信息处理中起作用的观点。

相似文献

1
Synaptic information transfer in computer models of neocortical columns.
J Comput Neurosci. 2011 Feb;30(1):69-84. doi: 10.1007/s10827-010-0253-4. Epub 2010 Jun 17.
2
Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges.
J Neurophysiol. 2005 Dec;94(6):4344-61. doi: 10.1152/jn.00510.2004. Epub 2005 Aug 10.
3
Correlation entropy of synaptic input-output dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Oct;74(4 Pt 1):041909. doi: 10.1103/PhysRevE.74.041909. Epub 2006 Oct 9.
4
Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.
PLoS Comput Biol. 2016 Aug 19;12(8):e1005078. doi: 10.1371/journal.pcbi.1005078. eCollection 2016 Aug.
5
Slow oscillations in neural networks with facilitating synapses.
J Comput Neurosci. 2008 Oct;25(2):308-16. doi: 10.1007/s10827-008-0080-z. Epub 2008 May 16.
6
Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies.
J Comput Neurosci. 2007 Oct;23(2):237-50. doi: 10.1007/s10827-007-0030-1. Epub 2007 Apr 6.
7
An information transmission measure for the analysis of effective connectivity among cortical neurons.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3293-6. doi: 10.1109/IEMBS.2010.5627253.
8
Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit.
J Physiol. 2004 Apr 1;556(Pt 1):19-27. doi: 10.1113/jphysiol.2004.060962. Epub 2004 Feb 20.
9
Dense inhibitory connectivity in neocortex.
Neuron. 2011 Mar 24;69(6):1188-203. doi: 10.1016/j.neuron.2011.02.025.
10
Diversity beyond variance: modulation of firing rates and network coherence by GABAergic subpopulations.
Eur J Neurosci. 2004 Jan;19(1):119-30. doi: 10.1046/j.1460-9568.2003.03096.x.

引用本文的文献

5
Estimating Transfer Entropy in Continuous Time Between Neural Spike Trains or Other Event-Based Data.
PLoS Comput Biol. 2021 Apr 19;17(4):e1008054. doi: 10.1371/journal.pcbi.1008054. eCollection 2021 Apr.
7
In silico hippocampal modeling for multi-target pharmacotherapy in schizophrenia.
NPJ Schizophr. 2020 Sep 21;6(1):25. doi: 10.1038/s41537-020-00109-0.
8
Computational modelling of pathogenic protein spread in neurodegenerative diseases.
PLoS One. 2018 Feb 5;13(2):e0192518. doi: 10.1371/journal.pone.0192518. eCollection 2018.
9
Multiscale modeling in the clinic: diseases of the brain and nervous system.
Brain Inform. 2017 Dec;4(4):219-230. doi: 10.1007/s40708-017-0067-5. Epub 2017 May 9.

本文引用的文献

1
Cortical enlightenment: are attentional gamma oscillations driven by ING or PING?
Neuron. 2009 Sep 24;63(6):727-32. doi: 10.1016/j.neuron.2009.09.009.
2
Harnessing chaos in recurrent neural networks.
Neuron. 2009 Aug 27;63(4):423-5. doi: 10.1016/j.neuron.2009.08.003.
3
Approaches to Information-Theoretic Analysis of Neural Activity.
Biol Theory. 2006;1(3):302-316. doi: 10.1162/biot.2006.1.3.302.
4
Extracting information from neuronal populations: information theory and decoding approaches.
Nat Rev Neurosci. 2009 Mar;10(3):173-85. doi: 10.1038/nrn2578.
5
State-dependent computations: spatiotemporal processing in cortical networks.
Nat Rev Neurosci. 2009 Feb;10(2):113-25. doi: 10.1038/nrn2558. Epub 2009 Jan 15.
6
Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons.
PLoS Comput Biol. 2008 Dec;4(12):e1000239. doi: 10.1371/journal.pcbi.1000239. Epub 2008 Dec 12.
7
Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm.
Neuron. 2008 Nov 26;60(4):683-97. doi: 10.1016/j.neuron.2008.09.014.
8
Faithful representation of stimuli with a population of integrate-and-fire neurons.
Neural Comput. 2008 Nov;20(11):2715-44. doi: 10.1162/neco.2008.06-07-559.
9
Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information.
J Neurosci. 2008 May 28;28(22):5696-709. doi: 10.1523/JNEUROSCI.0009-08.2008.
10
The virtual slice setup.
J Neurosci Methods. 2008 Jun 30;171(2):309-15. doi: 10.1016/j.jneumeth.2008.03.005. Epub 2008 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验