Neymotin Samuel A, Jacobs Kimberle M, Fenton André A, Lytton William W
Biomedical Engineering, SUNY Downstate Medical Center, 450 Clarkson Avenue, P.O. Box 31, Brooklyn, NY 11203-2098, USA.
J Comput Neurosci. 2011 Feb;30(1):69-84. doi: 10.1007/s10827-010-0253-4. Epub 2010 Jun 17.
Understanding the direction and quantity of information flowing in neuronal networks is a fundamental problem in neuroscience. Brains and neuronal networks must at the same time store information about the world and react to information in the world. We sought to measure how the activity of the network alters information flow from inputs to output patterns. Using neocortical column neuronal network simulations, we demonstrated that networks with greater internal connectivity reduced input/output correlations from excitatory synapses and decreased negative correlations from inhibitory synapses, measured by Kendall's τ correlation. Both of these changes were associated with reduction in information flow, measured by normalized transfer entropy (nTE). Information handling by the network reflected the degree of internal connectivity. With no internal connectivity, the feedforward network transformed inputs through nonlinear summation and thresholding. With greater connectivity strength, the recurrent network translated activity and information due to contribution of activity from intrinsic network dynamics. This dynamic contribution amounts to added information drawn from that stored in the network. At still higher internal synaptic strength, the network corrupted the external information, producing a state where little external information came through. The association of increased information retrieved from the network with increased gamma power supports the notion of gamma oscillations playing a role in information processing.
理解神经元网络中信息流的方向和数量是神经科学中的一个基本问题。大脑和神经元网络必须同时存储有关世界的信息并对世界中的信息做出反应。我们试图测量网络活动如何改变从输入到输出模式的信息流。通过新皮层柱神经元网络模拟,我们证明,通过肯德尔τ相关性测量,具有更强内部连接性的网络降低了兴奋性突触的输入/输出相关性,并减少了抑制性突触的负相关性。这两种变化都与通过归一化转移熵(nTE)测量的信息流减少有关。网络的信息处理反映了内部连接的程度。在没有内部连接的情况下,前馈网络通过非线性求和和阈值化来转换输入。随着连接强度的增加,循环网络由于内在网络动力学的活动贡献而转换活动和信息。这种动态贡献相当于从网络中存储的信息中提取的额外信息。在更高的内部突触强度下,网络会破坏外部信息,产生一种几乎没有外部信息通过的状态。从网络中检索到的信息增加与γ功率增加之间的关联支持了γ振荡在信息处理中起作用的观点。