Suppr超能文献

Frequency domain surface EMG sensor fusion for estimating finger forces.

作者信息

Potluri Chandrasekhar, Kumar Parmod, Anugolu Madhavi, Urfer Alex, Chiu Steve, Naidu D, Schoen Marco P

机构信息

Measurement and Control Engineering Research Center (MCERC), Idaho State University, Pocatello, Idaho 83201, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5975-8. doi: 10.1109/IEMBS.2010.5627575.

Abstract

Extracting or estimating skeletal hand/finger forces using surface electro myographic (sEMG) signals poses many challenges due to cross-talk, noise, and a temporal and spatially modulated signal characteristics. Normal sEMG measurements are based on single sensor data. In this paper, array sensors are used along with a proposed sensor fusion scheme that result in a simple Multi-Input-Single-Output (MISO) transfer function. Experimental data is used along with system identification to find this MISO system. A Genetic Algorithm (GA) approach is employed to optimize the characteristics of the MISO system. The proposed fusion-based approach is tested experimentally and indicates improvement in finger/hand force estimation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验