Suppr超能文献

基于多通道表面肌电图的多自由度运动过程中双侧手部运动学估计

Multichannel surface EMG based estimation of bilateral hand kinematics during movements at multiple degrees of freedom.

作者信息

Muceli Silvia, Jiang Ning, Farina Dario

机构信息

Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, DK-9220, Denmark.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6066-9. doi: 10.1109/IEMBS.2010.5627622.

Abstract

The paper proposes a method to estimate wrist kinematics from surface EMG signals for proportional and simultaneous control of multiple degrees of freedom (DOFs). The approach is based on the concurrent detection of surface EMG signals from forearm muscles and hand kinematics of both limbs during mirrored bilateral movements in free space which involve the simultaneous activation of wrist flexion/extension, radial/ulnar deviation and forearm pronation/supination. The estimation was based on one multilayer perceptron (MLP) neural network for each DOF. The three MLPs were trained to estimate angular displacements corresponding to the three DOFs. The average coefficient of determination between the true and the predicted angular displacement was 82.7 ± 2.9% (80.9 ± 3.4%) for flexion/extension, 75.0 ± 3.8% (72.6 ± 9.4%) for radial/ulnar deviation, 76.6 ± 11.8% (75.1 ± 11.7%) for pronation/supination for the ipsi-lateral (contra-lateral) hand. The scheme represents a step forward towards the simultaneous control of DOFs and thus a more natural prosthetic control.

摘要

本文提出了一种从表面肌电信号估计手腕运动学的方法,用于多自由度(DOF)的比例和同步控制。该方法基于在自由空间中进行镜像双侧运动时,同时检测来自前臂肌肉的表面肌电信号和双侧肢体的手部运动学,这些运动包括手腕屈伸、桡尺偏斜和前臂旋前/旋后的同时激活。估计基于每个自由度的一个多层感知器(MLP)神经网络。训练这三个MLP来估计对应于三个自由度的角位移。同侧(对侧)手的屈伸角位移的真实值与预测值之间的平均决定系数为82.7±2.9%(80.9±3.4%),桡尺偏斜为75.0±3.8%(72.6±9.4%),旋前/旋后为76.6±11.8%(75.1±11.7%)。该方案朝着多自由度的同步控制迈出了一步,从而实现了更自然的假肢控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验