Suppr超能文献

使用重加权l(1)最小化的多通道数据改进压缩感知磁共振成像

Improved compressed sensing MRI with multi-channel data using reweighted l(1) minimization.

作者信息

Chang Ching-Hua, Ji Jim

机构信息

Department of Electrical and Computer Engineering, Texas A&M University, TX 77843-3128, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:875-8. doi: 10.1109/IEMBS.2010.5627890.

Abstract

Compressed sensing (CS) is an emerging technology to speed up magnetic resonance imaging (MRI). Since most clinical MRI scanners are equipped with multi-channel receiver systems, there has been a number of works to integrate CS with multi-channel systems. In this paper, we propose a method that extends the reweighted l(1) minimization to the CS MRI with multi-channel data. The simulated experimental results show that the new method can provide improved reconstruction quality.

摘要

压缩感知(CS)是一种用于加速磁共振成像(MRI)的新兴技术。由于大多数临床MRI扫描仪都配备了多通道接收系统,因此已有许多将CS与多通道系统相结合的工作。在本文中,我们提出了一种将重新加权的l(1)最小化扩展到多通道数据的CS MRI的方法。模拟实验结果表明,新方法可以提供更高的重建质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验