Suppr超能文献

二维多层面快速磁共振成像的内插压缩感知。

Interpolated compressed sensing for 2D multiple slice fast MR imaging.

机构信息

Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America.

出版信息

PLoS One. 2013;8(2):e56098. doi: 10.1371/journal.pone.0056098. Epub 2013 Feb 8.

Abstract

Sparse MRI has been introduced to reduce the acquisition time and raw data size by undersampling the k-space data. However, the image quality, particularly the contrast to noise ratio (CNR), decreases with the undersampling rate. In this work, we proposed an interpolated Compressed Sensing (iCS) method to further enhance the imaging speed or reduce data size without significant sacrifice of image quality and CNR for multi-slice two-dimensional sparse MR imaging in humans. This method utilizes the k-space data of the neighboring slice in the multi-slice acquisition. The missing k-space data of a highly undersampled slice are estimated by using the raw data of its neighboring slice multiplied by a weighting function generated from low resolution full k-space reference images. In-vivo MR imaging in human feet has been used to investigate the feasibility and the performance of the proposed iCS method. The results show that by using the proposed iCS reconstruction method, the average image error can be reduced and the average CNR can be improved, compared with the conventional sparse MRI reconstruction at the same undersampling rate.

摘要

稀疏 MRI 通过对 k 空间数据进行欠采样来减少采集时间和原始数据量。然而,图像质量,特别是对比噪声比 (CNR),会随着欠采样率的降低而降低。在这项工作中,我们提出了一种插值压缩感知 (iCS) 方法,用于在不显著牺牲图像质量和 CNR 的情况下,进一步提高多切片二维稀疏 MRI 在人体中的成像速度或减少数据量。该方法利用了多切片采集中相邻切片的 k 空间数据。通过使用相邻切片的原始数据乘以来自低分辨率全 k 空间参考图像的加权函数,来估计高度欠采样切片的缺失 k 空间数据。已经使用人体脚部的体内 MR 成像来研究所提出的 iCS 方法的可行性和性能。结果表明,与相同欠采样率的传统稀疏 MRI 重建相比,使用所提出的 iCS 重建方法可以降低平均图像误差并提高平均 CNR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b557/3568040/06eefded66bf/pone.0056098.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验