Suppr超能文献

基于特征信息融合的多通道图像配准。

Multichannel image registration by feature-based information fusion.

机构信息

Section of Biomedical Image Analysis (SBIA), Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

IEEE Trans Med Imaging. 2011 Mar;30(3):707-20. doi: 10.1109/TMI.2010.2093908. Epub 2010 Nov 22.

Abstract

This paper proposes a novel nonrigid inter-subject multichannel image registration method which combines information from different modalities/channels to produce a unified joint registration. Multichannel images are created using co-registered multimodality images of the same subject to utilize information across modalities comprehensively. Contrary to the existing methods which combine the information at the image/intensity level, the proposed method uses feature-level information fusion method to spatio-adaptively combine the complementary information from different modalities that characterize different tissue types, through Gabor wavelets transformation and Independent Component Analysis (ICA), to produce a robust inter-subject registration. Experiments on both simulated and real multichannel images illustrate the applicability and robustness of the proposed registration method that combines information across modalities. This inter-subject registration is expected to pave the way for subsequent unified population-based multichannel studies.

摘要

本文提出了一种新颖的非刚性跨个体多通道图像配准方法,该方法结合了来自不同模态/通道的信息,以产生统一的联合配准。多通道图像是使用同一主体的配准多模态图像创建的,以全面利用模态间的信息。与现有的在图像/强度水平上组合信息的方法不同,所提出的方法使用特征级信息融合方法,通过 Gabor 小波变换和独立分量分析 (ICA),来对不同模态的互补信息进行空间自适应组合,这些信息可以描述不同的组织类型,从而产生稳健的跨个体配准。对模拟和真实多通道图像的实验表明了所提出的跨模态信息融合的配准方法的适用性和鲁棒性。这种跨个体配准有望为后续的基于人群的多通道研究铺平道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验