Suppr超能文献

使用B样条仿射变换的双向弹性图像配准

Bidirectional elastic image registration using B-spline affine transformation.

作者信息

Gu Suicheng, Meng Xin, Sciurba Frank C, Ma Hongxia, Leader Joseph, Kaminski Naftali, Gur David, Pu Jiantao

机构信息

Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, United States.

Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States.

出版信息

Comput Med Imaging Graph. 2014 Jun;38(4):306-14. doi: 10.1016/j.compmedimag.2014.01.002. Epub 2014 Jan 25.

Abstract

A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bidirectional instead of the traditional unidirectional objective/cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy.

摘要

本研究提出了一种称为B样条仿射变换(BSAT)的配准方案,用于弹性对齐两幅图像。我们在每个控制点定义仿射变换而非传统的平移。从数学角度来看,BSAT是仿射变换和传统B样条变换(BST)的广义形式。为了提高迭代最近点(ICP)方法在配准两个具有大变形的同源形状时的性能,提出了一种双向而非传统单向的目标/代价函数。在实现过程中,目标函数被表述为一个稀疏线性方程问题,并采用细分策略以在配准中实现合理的效率。使用二维(2D)合成数据集和三维(3D)容积计算机断层扫描(CT)数据对所开发方案的性能进行了评估。我们的实验表明,所提出的B样条仿射模型能够获得合理的配准精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77a/4019704/5c31607446be/nihms560385f1.jpg

相似文献

1
Bidirectional elastic image registration using B-spline affine transformation.使用B样条仿射变换的双向弹性图像配准
Comput Med Imaging Graph. 2014 Jun;38(4):306-14. doi: 10.1016/j.compmedimag.2014.01.002. Epub 2014 Jan 25.
4
Iterative most likely oriented point registration.迭代最可能定向点配准
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):178-85. doi: 10.1007/978-3-319-10404-1_23.
10
Analytic regularization of uniform cubic B-spline deformation fields.均匀三次B样条变形场的解析正则化
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):122-9. doi: 10.1007/978-3-642-33418-4_16.

引用本文的文献

本文引用的文献

4
Nonrigid image registration with crystal dislocation energy.基于晶体位错能的非刚体图像配准。
IEEE Trans Image Process. 2013 Jan;22(1):229-43. doi: 10.1109/TIP.2012.2205005. Epub 2012 Jun 18.
6
Mass preserving image registration for lung CT.肺部 CT 的质量保持图像配准。
Med Image Anal. 2012 May;16(4):786-95. doi: 10.1016/j.media.2011.11.001. Epub 2012 Jan 14.
7
Real-time image-based rigid registration of three-dimensional ultrasound.实时基于图像的三维超声刚性配准。
Med Image Anal. 2012 Feb;16(2):402-14. doi: 10.1016/j.media.2011.10.004. Epub 2011 Nov 15.
10
Intensity-Based Image Registration by Nonparametric Local Smoothing.基于非参数局部平滑的强度图像配准。
IEEE Trans Pattern Anal Mach Intell. 2011 Oct;33(10):2081-92. doi: 10.1109/TPAMI.2011.26. Epub 2011 Feb 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验