Suppr超能文献

基于学习的图像合成实现CT/MRI盆腔图像的区域自适应可变形配准

Region-adaptive Deformable Registration of CT/MRI Pelvic Images via Learning-based Image Synthesis.

作者信息

Cao Xiaohuan, Yang Jianhua, Gao Yaozong, Wang Qian, Shen Dinggang

出版信息

IEEE Trans Image Process. 2018 Mar 30. doi: 10.1109/TIP.2018.2820424.

Abstract

Registration of pelvic CT and MRI is highly desired as it can facilitate effective fusion of two modalities for prostate cancer radiation therapy, i.e., using CT for dose planning and MRI for accurate organ delineation. However, due to the large inter-modality appearance gaps and the high shape/appearance variations of pelvic organs, the pelvic CT/MRI registration is highly challenging. In this paper, we propose a region-adaptive deformable registration method for multi-modal pelvic image registration. Specifically, to handle the large appearance gaps, we first perform both CT-to-MRI and MRI-to-CT image synthesis by multi-target regression forest (MT-RF). Then, to use the complementary anatomical information in the two modalities for steering the registration, we select key points automatically from both modalities and use them together for guiding correspondence detection in the region-adaptive fashion. That is, we mainly use CT to establish correspondences for bone regions, and use MRI to establish correspondences for soft tissue regions. The number of key points is increased gradually during the registration, to hierarchically guide the symmetric estimation of the deformation fields. Experiments for both intra-subject and inter-subject deformable registration show improved performances compared with state-of-the-art multi-modal registration methods, which demonstrate the potentials of our method to be applied for the routine prostate cancer radiation therapy.

摘要

骨盆CT和MRI的配准非常必要,因为它有助于将两种模态有效地融合用于前列腺癌放射治疗,即使用CT进行剂量规划,使用MRI进行精确的器官轮廓勾画。然而,由于模态间外观差异大以及骨盆器官的形状/外观变化高,骨盆CT/MRI配准极具挑战性。在本文中,我们提出一种用于多模态骨盆图像配准的区域自适应可变形配准方法。具体而言,为了处理大的外观差异,我们首先通过多目标回归森林(MT-RF)进行CT到MRI以及MRI到CT的图像合成。然后,为了利用两种模态中的互补解剖信息来引导配准,我们从两种模态中自动选择关键点,并以区域自适应的方式将它们一起用于指导对应关系检测。也就是说,我们主要使用CT来建立骨区域的对应关系,使用MRI来建立软组织区域的对应关系。在配准过程中关键点的数量逐渐增加,以分层引导变形场的对称估计。与现有多模态配准方法相比,针对受试者内和受试者间可变形配准的实验均显示出性能的提升,这证明了我们的方法应用于常规前列腺癌放射治疗的潜力。

相似文献

8
MR to CT Registration of Brains using Image Synthesis.使用图像合成技术实现脑部的磁共振成像到计算机断层扫描配准
Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034. doi: spie.org/Publications/Proceedings/Paper/10.1117/12.2043954.

引用本文的文献

10
Multi-Task Learning for Registering Images With Large Deformation.多任务学习在大变形图像配准中的应用。
IEEE J Biomed Health Inform. 2021 May;25(5):1624-1633. doi: 10.1109/JBHI.2020.3016699. Epub 2021 May 11.

本文引用的文献

1
Deformable Image Registration based on Similarity-Steered CNN Regression.基于相似性引导卷积神经网络回归的可变形图像配准
Med Image Comput Comput Assist Interv. 2017 Sep;10433:300-308. doi: 10.1007/978-3-319-66182-7_35. Epub 2017 Sep 4.
2
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks.使用3D全卷积网络从MRI数据估计CT图像。
Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. doi: 10.1007/978-3-319-46976-8_18. Epub 2016 Sep 27.
3
Learning-Based Multimodal Image Registration for Prostate Cancer Radiation Therapy.基于学习的前列腺癌放射治疗多模态图像配准
Med Image Comput Comput Assist Interv. 2016 Oct;9902:1-9. doi: 10.1007/978-3-319-46726-9_1. Epub 2016 Oct 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验