Suppr超能文献

脉冲电子顺磁共振研究配体诱导的合成四环素核糖开关的构象捕获

Ligand-induced conformational capture of a synthetic tetracycline riboswitch revealed by pulse EPR.

机构信息

Fachbereich Physik, Universität Osnabrück, 49069 Osnabrück, Germany.

出版信息

RNA. 2011 Jan;17(1):182-8. doi: 10.1261/rna.2222811. Epub 2010 Nov 19.

Abstract

RNA aptamers are in vitro-selected binding domains that recognize their respective ligand with high affinity and specificity. They are characterized by complex three-dimensional conformations providing preformed binding pockets that undergo conformational changes upon ligand binding. Small molecule-binding aptamers have been exploited as synthetic riboswitches for conditional gene expression in various organisms. In the present study, double electron-electron resonance (DEER) spectroscopy combined with site-directed spin labeling was used to elucidate the conformational transition of a tetracycline aptamer upon ligand binding. Different sites were selected for post-synthetic introduction of either the (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl) methanethiosulfonate by reaction with a 4-thiouridine modified RNA or of 4-isocyanato-2,6-tetramethylpiperidyl-N-oxid spin label by reaction with 2'-aminouridine modified RNA. The results of the DEER experiments indicate the presence of a thermodynamic equilibrium between two aptamer conformations in the free state and capture of one conformation upon tetracycline binding.

摘要

RNA 适体是体外筛选出的结合域,能以高亲和力和特异性识别其各自的配体。它们的特点是具有复杂的三维构象,提供预先形成的结合口袋,在配体结合时发生构象变化。小分子结合适体已被用作各种生物体中条件基因表达的合成核糖开关。在本研究中,双电子电子共振(DEER)光谱结合定点自旋标记用于阐明配体结合时四环素适体的构象转变。选择不同的位点,通过与 4-硫尿嘧啶修饰的 RNA 反应,或通过与 2'-氨基尿嘧啶修饰的 RNA 反应,分别引入(1-氧代-2,2,5,5-四甲基吡咯啉-3-甲基)甲硫磺酸酯或 4-异氰酸酯-2,6-四甲基哌啶-N-氧化物自旋标记。DEER 实验的结果表明,在游离状态下,两种适体构象之间存在热力学平衡,并在四环素结合时捕获一种构象。

相似文献

1
Ligand-induced conformational capture of a synthetic tetracycline riboswitch revealed by pulse EPR.
RNA. 2011 Jan;17(1):182-8. doi: 10.1261/rna.2222811. Epub 2010 Nov 19.
2
Influence of Mg on the conformational flexibility of a tetracycline aptamer.
RNA. 2019 Jan;25(1):158-167. doi: 10.1261/rna.068684.118. Epub 2018 Oct 18.
3
High-Yield Spin Labeling of Long RNAs for Electron Paramagnetic Resonance Spectroscopy.
Biochemistry. 2018 May 22;57(20):2923-2931. doi: 10.1021/acs.biochem.8b00040. Epub 2018 May 10.
5
Tapping the potential of synthetic riboswitches: reviewing the versatility of the tetracycline aptamer.
RNA Biol. 2023 Jan;20(1):457-468. doi: 10.1080/15476286.2023.2234732.
6
Tuning the Performance of Synthetic Riboswitches using Machine Learning.
ACS Synth Biol. 2019 Jan 18;8(1):34-44. doi: 10.1021/acssynbio.8b00207. Epub 2019 Jan 8.
7
Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch.
RNA. 2013 Nov;19(11):1517-24. doi: 10.1261/rna.040493.113. Epub 2013 Sep 19.

引用本文的文献

2
Hybrid Boolean gates show that Cas12c controls transcription activation effectively in the yeast .
Front Bioeng Biotechnol. 2023 Sep 12;11:1267174. doi: 10.3389/fbioe.2023.1267174. eCollection 2023.
3
A selective and sensitive detection system for 4-thiouridine modification in RNA.
RNA. 2023 Feb;29(2):241-251. doi: 10.1261/rna.079445.122. Epub 2022 Nov 21.
4
Do the P1 and P2 hairpins of the Guanidine-II riboswitch interact?
Nucleic Acids Res. 2020 Oct 9;48(18):10518-10526. doi: 10.1093/nar/gkaa703.
5
Influence of Mg on the conformational flexibility of a tetracycline aptamer.
RNA. 2019 Jan;25(1):158-167. doi: 10.1261/rna.068684.118. Epub 2018 Oct 18.
6
High-resolution measurement of long-range distances in RNA: pulse EPR spectroscopy with TEMPO-labeled nucleotides.
Chem Sci. 2016 May 1;7(5):3172-3180. doi: 10.1039/c5sc04631a. Epub 2016 Feb 3.
7
Design of Artificial Riboswitches as Biosensors.
Sensors (Basel). 2017 Aug 30;17(9):1990. doi: 10.3390/s17091990.
8
StreAM-[Formula: see text]: algorithms for analyzing coarse grained RNA dynamics based on Markov models of connectivity-graphs.
Algorithms Mol Biol. 2017 May 30;12:15. doi: 10.1186/s13015-017-0105-0. eCollection 2017.
9
Applicability of a computational design approach for synthetic riboswitches.
Nucleic Acids Res. 2017 Apr 20;45(7):4108-4119. doi: 10.1093/nar/gkw1267.
10
Enriching s U-RNA Using Methane Thiosulfonate (MTS) Chemistry.
Curr Protoc Chem Biol. 2016 Dec 7;8(4):234-250. doi: 10.1002/cpch.12.

本文引用的文献

1
Aptamers and riboswitches: perspectives in biotechnology.
Appl Microbiol Biotechnol. 2009 Nov;85(2):229-36. doi: 10.1007/s00253-009-2194-2. Epub 2009 Sep 16.
2
A fast and efficient translational control system for conditional expression of yeast genes.
Nucleic Acids Res. 2009 Oct;37(18):e120. doi: 10.1093/nar/gkp578. Epub 2009 Jul 10.
3
Frameworks for programming biological function through RNA parts and devices.
Chem Biol. 2009 Mar 27;16(3):298-310. doi: 10.1016/j.chembiol.2009.02.011.
4
NMR chemical exchange as a probe for ligand-binding kinetics in a theophylline-binding RNA aptamer.
J Am Chem Soc. 2009 Apr 15;131(14):5052-3. doi: 10.1021/ja900695m.
5
Lesion-induced DNA weak structural changes detected by pulsed EPR spectroscopy combined with site-directed spin labelling.
Nucleic Acids Res. 2009 Jun;37(10):3165-76. doi: 10.1093/nar/gkp165. Epub 2009 Mar 20.
6
The structural and functional diversity of metabolite-binding riboswitches.
Annu Rev Biochem. 2009;78:305-34. doi: 10.1146/annurev.biochem.78.070507.135656.
8
Engineered riboswitches: overview, problems and trends.
RNA Biol. 2008 Jan-Mar;5(1):24-9. doi: 10.4161/rna.5.1.5955. Epub 2008 Mar 25.
9
Double electron-electron resonance (DEER): a convenient method to probe DNA conformational changes.
Angew Chem Int Ed Engl. 2008;47(4):735-7. doi: 10.1002/anie.200704133.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验