Suppr超能文献

在翻译校对过程中同源底物判别机制的深入了解。

Mechanistic insights into cognate substrate discrimination during proofreading in translation.

机构信息

Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India.

出版信息

Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22117-21. doi: 10.1073/pnas.1014299107. Epub 2010 Nov 22.

Abstract

Editing/proofreading by aminoacyl-tRNA synthetases is an important quality control step in the accurate translation of the genetic code that removes noncognate amino acids attached to tRNA. Defects in the process of editing result in disease conditions including neurodegeneration. While proofreading, the cognate amino acids larger by a methyl group are generally thought to be sterically rejected by the editing modules as envisaged by the "Double-Sieve Model." Strikingly using solution based direct binding studies, NMR-heteronuclear single quantum coherence (HSQC) and isothermal titration calorimetry experiments, with an editing domain of threonyl-tRNA synthetase, we show that the cognate substrate can gain access and bind to the editing pocket. High-resolution crystal structural analyses reveal that functional positioning of substrates rather than steric exclusion is the key for the mechanism of discrimination. A strategically positioned "catalytic water" molecule is excluded to avoid hydrolysis of the cognate substrate using a "RNA mediated substrate-assisted catalysis mechanism" at the editing site. The mechanistic proof of the critical role of RNA in proofreading activity is a completely unique solution to the problem of cognate-noncognate selection mechanism.

摘要

氨酰-tRNA 合成酶的编辑/校对是遗传密码准确翻译的一个重要质量控制步骤,它可以去除与 tRNA 结合的非对应氨基酸。编辑过程的缺陷会导致神经退行性疾病等疾病状况。在校对过程中,通常认为编辑模块会排斥较大的甲基化对应氨基酸,这正如“双筛模型”所设想的那样。使用基于溶液的直接结合研究、NMR-异核单量子相干(HSQC)和等温滴定量热实验,以及使用苏氨酸-tRNA 合成酶的编辑结构域,我们惊人地发现,对应底物可以进入并结合到编辑口袋中。高分辨率晶体结构分析表明,对于识别机制,底物的功能定位而不是空间排斥是关键。在编辑位点上,通过“RNA 介导的底物辅助催化机制”,巧妙定位的“催化水”分子被排除,以避免对应底物的水解。RNA 在校对活性中起关键作用的机制证据为对应-非对应选择机制问题提供了一个完全独特的解决方案。

相似文献

2
Proofreading in translation: dynamics of the double-sieve model.翻译中的校对:双筛模型的动态变化
Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):21949-50. doi: 10.1073/pnas.1016083107. Epub 2010 Dec 13.
9
Two-step pathway to aminoacylated tRNA.氨基酰化tRNA的两步途径。
Structure. 2005 Oct;13(10):1397-8. doi: 10.1016/j.str.2005.09.003.

引用本文的文献

1
4
Effect of Hydration on the Molecular Dynamics of Hydroxychloroquine Sulfate.水合作用对硫酸羟氯喹分子动力学的影响
ACS Omega. 2020 Aug 10;5(33):21231-21240. doi: 10.1021/acsomega.0c03091. eCollection 2020 Aug 25.
7
Chiral checkpoints during protein biosynthesis.蛋白质生物合成过程中的手性检查点。
J Biol Chem. 2019 Nov 8;294(45):16535-16548. doi: 10.1074/jbc.REV119.008166. Epub 2019 Oct 7.
9
Conformational and chemical selection by a -acting editing domain.α-作用编辑结构域的构象和化学选择。
Proc Natl Acad Sci U S A. 2017 Aug 15;114(33):E6774-E6783. doi: 10.1073/pnas.1703925114. Epub 2017 Aug 2.

本文引用的文献

3
Aminoacyl-tRNA synthesis and translational quality control.氨酰-tRNA合成与翻译质量控制。
Annu Rev Microbiol. 2009;63:61-78. doi: 10.1146/annurev.micro.091208.073210.
8
Mechanism of tRNA-dependent editing in translational quality control.翻译后质量控制中依赖tRNA的编辑机制。
Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):72-7. doi: 10.1073/pnas.0606272104. Epub 2006 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验