Suppr超能文献

一种将非蛋白质氨基酸掺入糖肽类抗生素的校对机制。

A proof-reading mechanism for non-proteinogenic amino acid incorporation into glycopeptide antibiotics.

作者信息

Kaniusaite Milda, Tailhades Julien, Marschall Edward A, Goode Robert J A, Schittenhelm Ralf B, Cryle Max J

机构信息

The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia . Email:

EMBL Australia , Monash University , Clayton , Victoria 3800 , Australia.

出版信息

Chem Sci. 2019 Aug 29;10(41):9466-9482. doi: 10.1039/c9sc03678d. eCollection 2019 Nov 7.

Abstract

Non-ribosomal peptide biosynthesis produces highly diverse natural products through a complex cascade of enzymatic reactions that together function with high selectivity to produce bioactive peptides. The modification of non-ribosomal peptide synthetase (NRPS)-bound amino acids can introduce significant structural diversity into these peptides and has exciting potential for biosynthetic redesign. However, the control mechanisms ensuring selective modification of specific residues during NRPS biosynthesis have previously been unclear. Here, we have characterised the incorporation of the non-proteinogenic amino acid 3-chloro-β-hydroxytyrosine during glycopeptide antibiotic (GPA) biosynthesis. Our results demonstrate that the modification of this residue by -acting enzymes is controlled by the selectivity of the upstream condensation domain responsible for peptide synthesis. A proofreading thioesterase works together with this process to ensure that effective peptide biosynthesis proceeds even when the selectivity of key amino acid activation domains within the NRPS is low. Furthermore, the exchange of condensation domains with altered amino acid specificities allows the modification of such residues within NRPS biosynthesis to be controlled, which will doubtless prove important for reengineering of these assembly lines. Taken together, our results indicate the importance of the complex interplay of NRPS domains and -acting enzymes to ensure effective GPA biosynthesis, and in doing so reveals a process that is mechanistically comparable to the hydrolytic proofreading function of tRNA synthetases in ribosomal protein synthesis.

摘要

非核糖体肽生物合成通过一系列复杂的酶促反应产生高度多样的天然产物,这些反应共同以高选择性发挥作用以产生生物活性肽。对非核糖体肽合成酶(NRPS)结合的氨基酸进行修饰可将显著的结构多样性引入这些肽中,并具有生物合成重新设计的令人兴奋的潜力。然而,此前尚不清楚在NRPS生物合成过程中确保特定残基选择性修饰的控制机制。在此,我们对糖肽抗生素(GPA)生物合成过程中非蛋白质氨基酸3-氯-β-羟基酪氨酸的掺入进行了表征。我们的结果表明,由作用于该残基的酶进行的修饰受负责肽合成的上游缩合结构域的选择性控制。一种校对硫酯酶与这一过程协同作用,以确保即使NRPS内关键氨基酸活化结构域的选择性较低时,有效的肽生物合成仍能进行。此外,用具有改变的氨基酸特异性的缩合结构域进行交换,可以控制NRPS生物合成过程中此类残基的修饰,这无疑将被证明对这些装配线的重新设计很重要。综上所述,我们的结果表明NRPS结构域与作用于该残基的酶之间复杂的相互作用对于确保有效的GPA生物合成很重要,并且在此过程中揭示了一个在机制上与核糖体蛋白质合成中tRNA合成酶的水解校对功能相当的过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9026/6993612/8f385192cae8/c9sc03678d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验