Centre for Infectious Diseases, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Road, Edinburgh EH93JT, UK.
BMC Public Health. 2010 Nov 24;10:726. doi: 10.1186/1471-2458-10-726.
Key to the control of pandemic influenza are surveillance systems that raise alarms rapidly and sensitively. In addition, they must minimise false alarms during a normal influenza season. We develop a method that uses historical syndromic influenza data from the existing surveillance system 'SERVIS' (Scottish Enhanced Respiratory Virus Infection Surveillance) for influenza-like illness (ILI) in Scotland.
We develop an algorithm based on the weekly case ratio (WCR) of reported ILI cases to generate an alarm for pandemic influenza. From the seasonal influenza data from 13 Scottish health boards, we estimate the joint probability distribution of the country-level WCR and the number of health boards showing synchronous increases in reported influenza cases over the previous week. Pandemic cases are sampled with various case reporting rates from simulated pandemic influenza infections and overlaid with seasonal SERVIS data from 2001 to 2007. Using this combined time series we test our method for speed of detection, sensitivity and specificity. Also, the 2008-09 SERVIS ILI cases are used for testing detection performances of the three methods with a real pandemic data.
We compare our method, based on our simulation study, to the moving-average Cumulative Sums (Mov-Avg Cusum) and ILI rate threshold methods and find it to be more sensitive and rapid. For 1% case reporting and detection specificity of 95%, our method is 100% sensitive and has median detection time (MDT) of 4 weeks while the Mov-Avg Cusum and ILI rate threshold methods are, respectively, 97% and 100% sensitive with MDT of 5 weeks. At 99% specificity, our method remains 100% sensitive with MDT of 5 weeks. Although the threshold method maintains its sensitivity of 100% with MDT of 5 weeks, sensitivity of Mov-Avg Cusum declines to 92% with increased MDT of 6 weeks. For a two-fold decrease in the case reporting rate (0.5%) and 99% specificity, the WCR and threshold methods, respectively, have MDT of 5 and 6 weeks with both having sensitivity close to 100% while the Mov-Avg Cusum method can only manage sensitivity of 77% with MDT of 6 weeks. However, the WCR and Mov-Avg Cusum methods outperform the ILI threshold method by 1 week in retrospective detection of the 2009 pandemic in Scotland.
While computationally and statistically simple to implement, the WCR algorithm is capable of raising alarms, rapidly and sensitively, for influenza pandemics against a background of seasonal influenza. Although the algorithm was developed using the SERVIS data, it has the capacity to be used at other geographic scales and for different disease systems where buying some early extra time is critical.
大流行性流感防控的关键是能够快速、灵敏地发出警报的监测系统。此外,在正常流感季节,它们必须将假警报的数量降至最低。我们开发了一种使用现有监测系统“SERVIS”(苏格兰增强型呼吸道病毒感染监测)报告的流感样疾病(ILI)的历史综合征数据的方法。
我们开发了一种基于报告ILI 病例的每周病例比(WCR)的算法,为大流行性流感发出警报。从 13 个苏格兰卫生委员会的季节性流感数据中,我们估计了全国范围内 WCR 和前一周报告流感病例同步增加的卫生委员会数量的联合概率分布。使用各种模拟大流行性流感感染的病例报告率对大流行病例进行抽样,并将其与 2001 年至 2007 年季节性 SERVIS 数据叠加。使用此组合时间序列,我们测试了我们的检测速度、敏感性和特异性方法。此外,还使用 2008-09 年 SERVIS ILI 病例对三种方法的真实大流行数据的检测性能进行了测试。
我们将我们的方法与基于我们的模拟研究的移动平均累积和(Mov-Avg Cusum)和 ILI 率阈值方法进行了比较,发现它更灵敏、更快。对于 1%的病例报告和 95%的检测特异性,我们的方法的灵敏度为 100%,检测中位数时间(MDT)为 4 周,而 Mov-Avg Cusum 和 ILI 率阈值方法的灵敏度分别为 97%和 100%,MDT 为 5 周。在特异性为 99%的情况下,我们的方法仍保持 100%的灵敏度,MDT 为 5 周。尽管阈值方法的 MDT 为 5 周,但其灵敏度仍保持 100%,但 Mov-Avg Cusum 的灵敏度下降到 6 周时的 92%。对于病例报告率降低两倍(0.5%)和 99%的特异性,WCR 和阈值方法的 MDT 分别为 5 周和 6 周,两者的灵敏度均接近 100%,而 Mov-Avg Cusum 方法的灵敏度仅为 6 周时的 77%。然而,在对苏格兰 2009 年大流行的回顾性检测中,WCR 和 Mov-Avg Cusum 方法比 ILI 阈值方法分别提前一周发出警报。
虽然在计算和统计上实现起来很简单,但 WCR 算法能够在季节性流感的背景下快速、灵敏地发出流感大流行警报。尽管该算法是使用 SERVIS 数据开发的,但它具有在其他地理规模和不同疾病系统中使用的能力,在这些系统中,及早获得额外的时间至关重要。