Departament de Genètica i de Microbiologia, Grup de Biologia Evolutiva (GBE), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
BMC Evol Biol. 2010 Nov 25;10:363. doi: 10.1186/1471-2148-10-363.
Behaviour has been traditionally viewed as a driver of subsequent evolution because behavioural adjustments expose organisms to novel environments, which may result in a correlated evolution on other traits. In Drosophila subobscura, thermal preference and heat tolerance are linked to chromosomal inversion polymorphisms that show parallel latitudinal clines worldwide, such that "cold-climate" ("warm-climate") chromosome arrangements collectively favour a coherent response to colder (warmer) settings as flies carrying them prefer colder (warmer) conditions and have lower (higher) knock out temperatures. Yet, it is not clear whether a genetic correlation between thermal preference and heat tolerance can partially underlie such response.
We have analyzed the genetic basis of thermal preference and heat tolerance using isochromosomal lines in D. subobscura. Chromosome arrangements on the O chromosome were known to have a biometrical effect on thermal preference in a laboratory temperature gradient, and also harbour several genes involved in the heat shock response; in particular, the genes Hsp68 and Hsp70. Our results corroborate that arrangements on chromosome O affect adult thermal preference in a laboratory temperature gradient, with cold-climate Ost carriers displaying a lower thermal preference than their warm-climate O3+4 and O3+4+8 counterparts. However, these chromosome arrangements did not have any effect on adult heat tolerance and, hence, we putatively discard a genetic covariance between both traits arising from linkage disequilibrium between genes affecting thermal preference and candidate genes for heat shock resistance. Nonetheless, a possible association of juvenile thermal preference and heat resistance warrants further analysis.
Thermal preference and heat tolerance in the isochromosomal lines of D. subobscura appear to be genetically independent, which might potentially prevent a coherent response of behaviour and physiology (i.e., coadaptation) to thermal selection. If this pattern is general to all chromosomes, then any correlation between thermal preference and heat resistance across latitudinal gradients would likely reflect a pattern of correlated selection rather than genetic correlation.
行为一直被传统地视为后续进化的驱动力,因为行为调整使生物体暴露于新环境中,这可能导致其他特征的相关进化。在黑腹果蝇亚种中,热偏好和热耐受性与染色体倒位多态性相关联,这些多态性在全球范围内表现出平行的纬度梯度,即“冷气候”(“暖气候”)染色体排列共同有利于对较冷(较暖)环境的一致反应,因为携带它们的果蝇更喜欢较冷(较暖)的条件,并且具有较低(较高)的敲除温度。然而,目前尚不清楚热偏好和热耐受性之间的遗传相关性是否可以部分解释这种反应。
我们使用黑腹果蝇亚种的同染色体系分析了热偏好和热耐受性的遗传基础。O 染色体上的染色体排列已知对实验室温度梯度中的热偏好具有生物计量学影响,并且还包含几个参与热休克反应的基因;特别是 Hsp68 和 Hsp70 基因。我们的结果证实,O 染色体上的排列会影响实验室温度梯度中的成虫热偏好,冷气候 Ost 携带者的热偏好低于其暖气候 O3+4 和 O3+4+8 对应物。然而,这些染色体排列对成虫耐热性没有任何影响,因此,我们推测由于影响热偏好的基因与候选热休克抗性基因之间的连锁不平衡,这两个特征之间不存在遗传协方差。尽管如此,幼年热偏好和耐热性之间的可能关联仍需要进一步分析。
黑腹果蝇亚种同染色体系中的热偏好和热耐受性在遗传上似乎是独立的,这可能潜在地阻止行为和生理学(即协同适应)对热选择的一致反应。如果这种模式适用于所有染色体,那么纬度梯度上热偏好和耐热性之间的任何相关性很可能反映出相关选择的模式,而不是遗传相关性。