Suppr超能文献

RNA 世界中转译起源的情景:在复制简约性原则下。

The scenario on the origin of translation in the RNA world: in principle of replication parsimony.

机构信息

College of Life Sciences, Wuhan University, Wuhan 430072, PR China.

出版信息

Biol Direct. 2010 Nov 27;5:65. doi: 10.1186/1745-6150-5-65.

Abstract

BACKGROUND

It is now believed that in the origin of life, proteins should have been "invented" in an RNA world. However, due to the complexity of a possible RNA-based proto-translation system, this evolving process seems quite complicated and the associated scenario remains very blurry. Considering that RNA can bind amino acids with specificity, it has been reasonably supposed that initial peptides might have been synthesized on "RNA templates" containing multiple amino acid binding sites. This "Direct RNA Template (DRT)" mechanism is attractive because it should be the simplest mechanism for RNA to synthesize peptides, thus very likely to have been adopted initially in the RNA world. Then, how this mechanism could develop into a proto-translation system mechanism is an interesting problem.

PRESENTATION OF THE HYPOTHESIS

Here an explanation to this problem is shown considering the principle of "replication parsimony"--genetic information tends to be utilized in a parsimonious way under selection pressure, due to its replication cost (e.g., in the RNA world, nucleotides and ribozymes for RNA replication). Because a DRT would be quite long even for a short peptide, its replication cost would be great. Thus the diversity and the length of functional peptides synthesized by the DRT mechanism would be seriously limited. Adaptors (proto-tRNAs) would arise to allow a DRT's complementary strand (called "C-DRT" here) to direct the synthesis of the same peptide synthesized by the DRT itself. Because the C-DRT is a necessary part in the DRT's replication, fewer turns of the DRT's replication would be needed to synthesize definite copies of the functional peptide, thus saving the replication cost. Acting through adaptors, C-DRTs could transform into much shorter templates (called "proto-mRNAs" here) and substitute the role of DRTs, thus significantly saving the replication cost. A proto-rRNA corresponding to the small subunit rRNA would then emerge to aid the binding of proto-tRNAs and proto-mRNAs, allowing the reduction of base pairs between them (ultimately resulting in the triplet anticodon/codon pair), thus further saving the replication cost. In this context, the replication cost saved would allow the appearance of more and longer functional peptides and, finally, proteins. The hypothesis could be called "DRT-RP" ("RP" for "replication parsimony").

TESTING THE HYPOTHESIS

The scenario described here is open for experimental work at some key scenes, including the compact DRT mechanism, the development of adaptors from aa-aptamers, the synthesis of peptides by proto-tRNAs and proto-mRNAs without the participation of proto-rRNAs, etc. Interestingly, a recent computer simulation study has demonstrated the plausibility of one of the evolving processes driven by replication parsimony in the scenario.

IMPLICATION OF THE HYPOTHESIS

An RNA-based proto-translation system could arise gradually from the DRT mechanism according to the principle of "replication parsimony"--to save the replication cost of RNA templates for functional peptides. A surprising side deduction along the logic of the hypothesis is that complex, biosynthetic amino acids might have entered the genetic code earlier than simple, prebiotic amino acids, which is opposite to the common sense. Overall, the present discussion clarifies the blurry scenario concerning the origin of translation with a major clue, which shows vividly how life could "manage" to exploit potential chemical resources in nature, eventually in an efficient way over evolution.

摘要

背景

现在人们认为,在生命起源过程中,蛋白质应该是在 RNA 世界中“发明”的。然而,由于可能的基于 RNA 的原始翻译系统的复杂性,这个进化过程似乎相当复杂,相关场景仍然非常模糊。考虑到 RNA 可以特异性地结合氨基酸,人们合理地假设初始肽可能是在含有多个氨基酸结合位点的“RNA 模板”上合成的。这种“直接 RNA 模板 (DRT)”机制很有吸引力,因为它应该是 RNA 合成肽的最简单机制,因此很可能最初就在 RNA 世界中被采用。那么,这个机制如何发展成原始翻译系统机制,这是一个有趣的问题。

假设的提出

这里提出了一个解释这个问题的方法,考虑到“复制简约性”的原则——在选择压力下,由于遗传信息的复制成本(例如,在 RNA 世界中,核苷酸和用于 RNA 复制的核酶),遗传信息往往会以简约的方式被利用。由于即使对于短肽,DRT 也会相当长,其复制成本也会很大。因此,DRT 机制合成的功能肽的多样性和长度将受到严重限制。适应子(原 tRNA)的出现将允许 DRT 的互补链(这里称为“C-DRT”)指导由 DRT 本身合成的相同肽的合成。由于 C-DRT 是 DRT 复制的必要部分,因此需要更少的 DRT 复制循环来合成功能肽的确定拷贝,从而节省了复制成本。通过适应子的作用,C-DRT 可以转化为更短的模板(这里称为“原 mRNA”)并取代 DRT 的作用,从而显著节省复制成本。然后,对应于小亚基 rRNA 的原 rRNA 将出现,以帮助原 tRNA 和原 mRNA 的结合,从而减少它们之间的碱基对(最终导致三联体反密码子/密码子对),从而进一步节省复制成本。在这种情况下,节省的复制成本将允许更多和更长的功能肽出现,最终出现蛋白质。该假设可以称为“DRT-RP”(“RP”代表“复制简约性”)。

假设的检验

这里描述的场景在一些关键场景中为实验工作提供了开放的可能性,包括紧凑的 DRT 机制、从 aa-适体发展适应子、原 tRNA 和原 mRNA 在没有原 rRNA 参与的情况下合成肽等。有趣的是,最近的一项计算机模拟研究表明,在该场景中,由复制简约性驱动的一个进化过程具有合理性。

假设的意义

基于 RNA 的原始翻译系统可以根据“复制简约性”原则从 DRT 机制逐渐产生——为功能肽的 RNA 模板节省复制成本。沿着假设的逻辑得出的一个令人惊讶的推论是,复杂的、生物合成的氨基酸可能比简单的、前生物的氨基酸更早地进入遗传密码,这与常识相反。总的来说,目前的讨论通过一个主要线索阐明了与翻译起源相关的模糊场景,生动地展示了生命如何能够“管理”有效地利用自然界中潜在的化学资源,最终在进化过程中以高效的方式实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e81f/3002371/eb73edc2cd19/1745-6150-5-65-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验