Cavalier-Smith T
Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom.
J Mol Evol. 2001 Oct-Nov;53(4-5):555-95. doi: 10.1007/s002390010245.
I attempt to sketch a unified picture of the origin of living organisms in their genetic, bioenergetic, and structural aspects. Only selection at a higher level than for individual selfish genes could power the cooperative macromolecular coevolution required for evolving the genetic code. The protein synthesis machinery is too complex to have evolved before membranes. Therefore a symbiosis of membranes, replicators, and catalysts probably mediated the origin of the code and the transition from a nucleic acid world of independent molecular replicators to a nucleic acid/protein/lipid world of reproducing organisms. Membranes initially functioned as supramolecular structures to which different replicators attached and were selected as a higher-level reproductive unit: the proto-organism. I discuss the roles of stereochemistry, gene divergence, codon capture, and selection in the code's origin. I argue that proteins were primarily structural not enzymatic and that the first biological membranes consisted of amphipathic peptidyl-tRNAs and prebiotic mixed lipids. The peptidyl-tRNAs functioned as genetically-specified lipid analogues with hydrophobic tails (ancestral signal peptides) and hydrophilic polynucleotide heads. Protoribosomes arose from two cooperating RNAs: peptidyl transferase (large subunit) and mRNA-binder (small subunit). Early proteins had a second key role: coupling energy flow to the phosphorylation of gene and peptide precursors, probably by lithophosphorylation by membrane-anchored kinases scavenging geothermal polyphosphate stocks. These key evolutionary steps probably occurred on the outer surface of an 'inside out-cell' or obcell, which evolved an unambiguous hydrophobic code with four prebiotic amino acids and proline, and initiation by isoleucine anticodon CAU; early proteins and nucleozymes were all membrane-attached. To improve replication, translation, and lithophosphorylation, hydrophilic substrate-binding and catalytic domains were later added to signal peptides, yielding a ten-acid doublet code. A primitive proto-ecology of molecular scavenging, parasitism, and predation evolved among obcells. I propose a new theory for the origin of the first cell: fusion of two cup-shaped obcells, or hemicells, to make a protocell with double envelope, internal genome and ribosomes, protocytosol, and periplasm. Only then did water-soluble enzymes, amino acid biosynthesis, and intermediary metabolism evolve in a concentrated autocatalytic internal cytosolic soup, causing 12 new amino acid assignments, termination, and rapid freezing of the 22-acid code. Anticodons were recruited sequentially: GNN, CNN, INN, and *UNN. CO2 fixation, photoreduction, and lipid synthesis probably evolved in the protocell before photophosphorylation. Signal recognition particles, chaperones, compartmented proteases, and peptidoglycan arose prior to the last common ancestor of life, a complex autotrophic, anaerobic green bacterium.
我试图勾勒出生物体在遗传、生物能量和结构方面起源的统一图景。只有比个体自私基因更高层次的选择,才能推动进化出遗传密码所需的合作性大分子共同进化。蛋白质合成机制过于复杂,不可能在膜之前就进化出来。因此,膜、复制子和催化剂之间的共生关系可能介导了密码的起源,以及从独立分子复制子的核酸世界到繁殖生物体的核酸/蛋白质/脂质世界的转变。膜最初作为超分子结构发挥作用,不同的复制子附着其上,并被选为更高层次的繁殖单位:原始生物体。我讨论了立体化学、基因分歧、密码子捕获和选择在密码起源中的作用。我认为蛋白质最初主要是结构性的而非酶性的,并且第一批生物膜由两亲性肽基tRNA和益生元混合脂质组成。肽基tRNA作为具有疏水尾部(祖先信号肽)和亲水多核苷酸头部的基因指定脂质类似物发挥作用。原核糖体由两种合作的RNA产生:肽基转移酶(大亚基)和mRNA结合蛋白(小亚基)。早期蛋白质还具有第二个关键作用:将能量流与基因和肽前体的磷酸化偶联起来,可能是通过膜锚定激酶的石磷酸化作用来清除地热多磷酸盐储备。这些关键的进化步骤可能发生在“内翻细胞”或原细胞的外表面,原细胞进化出了一种明确的疏水密码,包含四种益生元氨基酸和脯氨酸,并由异亮氨酸反密码子CAU起始;早期蛋白质和核酶都附着在膜上。为了改善复制、翻译和石磷酸化,亲水底物结合和催化结构域后来被添加到信号肽上,产生了一个十酸双峰密码。在原细胞之间进化出了一种分子清除、寄生和捕食的原始原生态学。我提出了一种关于第一个细胞起源的新理论:两个杯状原细胞或半细胞融合,形成一个具有双包膜、内部基因组和核糖体、原细胞质和周质的原始细胞。只有到那时,水溶性酶、氨基酸生物合成和中间代谢才在浓缩的自催化内部胞质汤中进化,导致12种新的氨基酸分配、终止以及22酸密码的快速冻结。反密码子是依次招募的:GNN、CNN、INN和*UNN。二氧化碳固定、光还原和脂质合成可能在原始细胞中先于光合磷酸化进化出来。信号识别颗粒、伴侣蛋白、区室化蛋白酶和肽聚糖在生命的最后共同祖先之前就出现了,生命的最后共同祖先是一种复杂的自养、厌氧绿色细菌。