Human Genetics Center, School of Public Health, University of Texas, Houston, TX 77225, USA.
Biol Direct. 2011 Feb 22;6:14. doi: 10.1186/1745-6150-6-14.
Synthesis of proteins is based on the genetic code - a nearly universal assignment of codons to amino acids (aas). A major challenge to the understanding of the origins of this assignment is the archetypal "key-lock vs. frozen accident" dilemma. Here we re-examine this dilemma in light of 1) the fundamental veto on "foresight evolution", 2) modular structures of tRNAs and aminoacyl-tRNA synthetases, and 3) the updated library of aa-binding sites in RNA aptamers successfully selected in vitro for eight amino acids.
The aa-binding sites of arginine, isoleucine and tyrosine contain both their cognate triplets, anticodons and codons. We have noticed that these cases might be associated with palindrome-dinucleotides. For example, one-base shift to the left brings arginine codons CGN, with CG at 1-2 positions, to the respective anticodons NCG, with CG at 2-3 positions. Formally, the concomitant presence of codons and anticodons is also expected in the reverse situation, with codons containing palindrome-dinucleotides at their 2-3 positions, and anticodons exhibiting them at 1-2 positions. A closer analysis reveals that, surprisingly, RNA binding sites for Arg, Ile and Tyr "prefer" (exactly as in the actual genetic code) the anticodon(2-3)/codon(1-2) tetramers to their anticodon(1-2)/codon(2-3) counterparts, despite the seemingly perfect symmetry of the latter. However, since in vitro selection of aa-specific RNA aptamers apparently had nothing to do with translation, this striking preference provides a new strong support to the notion of the genetic code emerging before translation, in response to catalytic (and possibly other) needs of ancient RNA life. Consistently with the pre-translation origin of the code, we propose here a new model of tRNA origin by the gradual, Fibonacci process-like, elongation of a tRNA molecule from a primordial coding triplet and 5'DCCA3' quadruplet (D is a base-determinator) to the eventual 76 base-long cloverleaf-shaped molecule.
Taken together, our findings necessarily imply that primordial tRNAs, tRNA aminoacylating ribozymes, and (later) the translation machinery in general have been co-evolving to ''fit'' the (likely already defined) genetic code, rather than the opposite way around. Coding triplets in this primal pre-translational code were likely similar to the anticodons, with second and third nucleotides being more important than the less specific first one. Later, when the code was expanding in co-evolution with the translation apparatus, the importance of 2-3 nucleotides of coding triplets "transferred" to the 1-2 nucleotides of their complements, thus distinguishing anticodons from codons. This evolutionary primacy of anticodons in genetic coding makes the hypothesis of primal stereo-chemical affinity between amino acids and cognate triplets, the hypothesis of coding coenzyme handles for amino acids, the hypothesis of tRNA-like genomic 3' tags suggesting that tRNAs originated in replication, and the hypothesis of ancient ribozymes-mediated operational code of tRNA aminoacylation not mutually contradicting but rather co-existing in harmony.
蛋白质的合成基于遗传密码——一种几乎普遍的密码子与氨基酸(aa)的对应关系。理解这种对应关系起源的主要挑战是典型的“关键锁与冻结事故”困境。在这里,我们根据以下 1)对“前瞻性进化”的基本否决,2)tRNA 和氨酰-tRNA 合成酶的模块结构,以及 3)体外成功选择的 8 种氨基酸的 aa 结合位点的更新文库,重新审视了这个困境。
精氨酸、异亮氨酸和酪氨酸的 aa 结合位点都包含它们的同源三联体、反密码子和密码子。我们注意到,这些情况可能与回文二核苷酸有关。例如,向左移动一个碱基会将精氨酸密码子 CGN,其中 CG 在 1-2 位,转换为相应的反密码子 NCG,其中 CG 在 2-3 位。从形式上看,在相反的情况下,也应该同时存在密码子和反密码子,其中包含回文二核苷酸的密码子位于 2-3 位,而反密码子则位于 1-2 位。更仔细的分析表明,令人惊讶的是,Arg、Ile 和 Tyr 的 RNA 结合位点“偏好”(与实际遗传密码完全一致)反密码子(2-3)/密码子(1-2)四联体,而不是反密码子(1-2)/密码子(2-3)四联体,尽管后者看起来完美对称。然而,由于体外选择 aa 特异性 RNA 适体显然与翻译无关,这种惊人的偏好为遗传密码在翻译之前出现的观点提供了新的有力支持,这是对古老 RNA 生命的催化(和可能其他)需求的回应。与代码的翻译前起源一致,我们在这里提出了一个新的 tRNA 起源模型,即通过原始编码三联体和 5'DCCA3'四联体(D 是碱基决定体)的逐步、类似斐波那契过程的伸长,从一个原始的编码三联体和 5'DCCA3'四联体(D 是碱基决定体)逐渐伸长,最终形成 76 个碱基长的三叶草形分子。
总之,我们的发现必然意味着原始 tRNA、tRNA 氨酰化核酶,以及(后来)一般的翻译机制,一直在共同进化以“适应”(可能已经定义的)遗传密码,而不是相反。这个原始的预翻译密码中的编码三联体可能与反密码子相似,第二和第三个核苷酸比不太特异的第一个核苷酸更重要。后来,当密码子在与翻译装置的共同进化中扩展时,编码三联体的 2-3 个核苷酸的重要性“转移”到它们互补物的 1-2 个核苷酸,从而区分了反密码子和密码子。这种遗传密码中反密码子的进化优先性使得氨基酸与同源三联体之间原始的立体化学亲和力假说、编码辅酶对氨基酸的处理假说、tRNA 样基因组 3'标签假说(暗示 tRNA 起源于复制)以及古老的核酶介导的 tRNA 氨酰化操作码假说相互之间并不矛盾,而是和谐共存。