Center for Biomedical Research, The Queen's Medical Center, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813, USA.
J Gen Physiol. 2010 Dec;136(6):673-86. doi: 10.1085/jgp.201010484.
Store-operated Ca(2+) entry is controlled by the interaction of stromal interaction molecules (STIMs) acting as endoplasmic reticulum ER Ca(2+) sensors with calcium release-activated calcium (CRAC) channels (CRACM1/2/3 or Orai1/2/3) in the plasma membrane. Here, we report structural requirements of STIM1-mediated activation of CRACM1 and CRACM3 using truncations, point mutations, and CRACM1/CRACM3 chimeras. In accordance with previous studies, truncating the N-terminal region of CRACM1 or CRACM3 revealed a 20-amino acid stretch close to the plasma membrane important for channel gating. Exchanging the N-terminal region of CRACM3 with that of CRACM1 (CRACM3-N(M1)) results in accelerated kinetics and enhanced current amplitudes. Conversely, transplanting the N-terminal region of CRACM3 into CRACM1 (CRACM1-N(M3)) leads to severely reduced store-operated currents. Highly conserved amino acids (K85 in CRACM1 and K60 in CRACM3) in the N-terminal region close to the first transmembrane domain are crucial for STIM1-dependent gating of CRAC channels. Single-point mutations of this residue (K85E and K60E) eliminate store-operated currents induced by inositol 1,4,5-trisphosphate and reduce store-independent gating by 2-aminoethoxydiphenyl borate. However, short fragments of these mutant channels are still able to communicate with the CRAC-activating domain of STIM1. Collectively, these findings identify a single amino acid in the N terminus of CRAC channels as a critical element for store-operated gating of CRAC channels.
钙库操纵性钙内流(store-operated Ca(2+) entry)由基质相互作用分子(stromal interaction molecules,STIMs)作为内质网 Ca(2+) 感受器与质膜上的钙释放激活钙(calcium release-activated calcium,CRAC)通道(CRACM1/2/3 或 Orai1/2/3)相互作用来控制。在这里,我们报告了使用截断、点突变和 CRACM1/CRACM3 嵌合体来研究 STIM1 介导的 CRACM1 和 CRACM3 激活的结构要求。与先前的研究一致,截断 CRACM1 或 CRACM3 的 N 端区域揭示了靠近质膜的对于通道门控很重要的 20 个氨基酸延伸。将 CRACM3 的 N 端区域与 CRACM1 的 N 端区域交换(CRACM3-N(M1))会导致动力学加速和增强的电流幅度。相反,将 CRACM3 的 N 端区域移植到 CRACM1 中(CRACM1-N(M3))会导致严重减少的钙库操纵性电流。在靠近第一个跨膜结构域的 N 端的高度保守氨基酸(CRACM1 中的 K85 和 CRACM3 中的 K60)对于 STIM1 依赖的 CRAC 通道门控至关重要。该残基的单点突变(K85E 和 K60E)消除了肌醇 1,4,5-三磷酸诱导的钙库操纵性电流,并将无钙库的门控作用降低了 2-氨基乙氧基二苯硼酸盐 2 倍。然而,这些突变通道的短片段仍然能够与 STIM1 的 CRAC 激活结构域进行通讯。总的来说,这些发现确定了 CRAC 通道 N 端的单个氨基酸是 CRAC 通道钙库操纵性门控的关键要素。