Suppr超能文献

分子同源性与DNA杂交。

Molecular homology and DNA hybridization.

作者信息

Bledsoe A H, Sheldon F H

机构信息

Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260.

出版信息

J Mol Evol. 1990 May;30(5):425-33. doi: 10.1007/BF02101114.

Abstract

We reviewed the concept of homology, which can broadly be defined as a correspondence between characteristics that is caused by continuity of information (Van Valen 1982). The concept applies widely in molecular biology when correspondence is taken to mean a genetic relationship resulting from a unique heritable modification of a feature at some previous point in time. Such correspondence can be established for features within a single organism as well as between organisms, making paralogy a valid form of molecular homology under this definition. Molecular homology can be recognized at a variety of organizational levels, which are interdependent. For example, the recognition of homology at the site level involves a statement of homology at the sequence level, and vice versa. This hierarchy, the potential for nonhomologous identity at the site level, and such processes as sequence transposition combine to yield a molecular equivalent to complex structural homology at the anatomical level. As a result, statements of homology between heritable units can involve a valid sense of percent homology. We analyzed DNA hybridization with respect to the problems of recognizing homology and using it in phylogenetic inference. Under a model requiring continuous divergence among compared sequences, DNA hybridization distances embed evolutionary hierarchy, and groups inferred using pairwise methods of tree reconstruction are based on underlying patterns of apomorphic homology. Thus, symple-siomorphic homology will not confound DNA hybridization phylogenies. However, nonhomologous identities that act like apomorphic homologies can lead to inaccurate reconstructions. The main difference between methods of phylogenetic analysis of DNA sequences is that parsimony methods permit hypotheses of nonhomology, whereas distance methods do not.

摘要

我们回顾了同源性的概念,它大致可定义为因信息连续性而导致的特征之间的对应关系(范·瓦伦,1982年)。当对应关系被理解为在先前某个时间点对某一特征进行独特的可遗传修饰所产生的遗传关系时,这一概念在分子生物学中广泛应用。这种对应关系既可以在单个生物体的特征之间建立,也可以在不同生物体之间建立,这使得在该定义下并系同源成为分子同源性的一种有效形式。分子同源性可以在多种相互依存的组织层面上被识别。例如,在位点层面识别同源性涉及到在序列层面的同源性表述,反之亦然。这种层级关系、位点层面非同源同一性的可能性以及序列转位等过程共同作用,产生了在解剖学层面与复杂结构同源性等效的分子同源性。因此,关于可遗传单元之间同源性的表述可以包含有效的同源百分比概念。我们针对识别同源性及其在系统发育推断中的应用问题,分析了DNA杂交。在一个要求被比较序列持续分化的模型下,DNA杂交距离嵌入了进化层级,并且使用成对树重建方法推断出的类群是基于近裔同源性的潜在模式。因此,同塑同源性不会混淆DNA杂交系统发育树。然而,那些表现得像近裔同源性的非同源同一性可能导致不准确的重建。DNA序列系统发育分析方法之间的主要区别在于,简约法允许非同源性假设,而距离法不允许。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验