Suppr超能文献

利用多孔硅光子晶体颗粒的光学特性实时监测持续药物释放。

Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles.

机构信息

Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States.

出版信息

Biomaterials. 2011 Mar;32(7):1957-66. doi: 10.1016/j.biomaterials.2010.11.013. Epub 2010 Nov 30.

Abstract

A controlled and observable drug delivery system that enables long-term local drug administration is reported. Biodegradable and biocompatible drug-loaded porous Si microparticles were prepared from silicon wafers, resulting in a porous 1-dimensional photonic crystal (rugate filter) approx. 12 μm thick and 35 μm across. An organic linker, 1-undecylenic acid, was attached to the Si-H terminated inner surface of the particles by hydrosilylation and the anthracycline drug daunorubicin was bound to the carboxy terminus of the linker. Degradation of the porous Si matrix in vitro was found to release the drug in a linear and sustained fashion for 30 d. The bioactivity of the released daunorubicin was verified on retinal pigment epithelial (RPE) cells. The degradation/drug delivery process was monitored in situ by digital imaging or spectroscopic measurement of the photonic resonance reflected from the nanostructured particles, and a simple linear correlation between observed wavelength and drug release was observed. Changes in the optical reflectance spectrum were sufficiently large to be visible as a distinctive red to green color change.

摘要

本文报道了一种可控且可观察的药物输送系统,可实现长期局部药物给药。从硅片制备了可生物降解和生物相容的载药多孔硅微球,得到了约 12μm 厚、35μm 宽的多孔一维光子晶体(波纹滤光片)。通过硅氢化反应将有机连接物十一烯酸连接到颗粒的 Si-H 终止内表面上,并将蒽环类药物柔红霉素结合到连接物的羧基末端。体外多孔硅基质的降解被发现以线性和持续的方式释放药物 30 天。释放的柔红霉素的生物活性在视网膜色素上皮(RPE)细胞上得到了验证。通过数字成像或从纳米结构颗粒反射的光子共振的光谱测量对降解/药物输送过程进行了原位监测,并观察到观察到的波长与药物释放之间存在简单的线性相关性。光学反射率光谱的变化足够大,可以作为明显的红到绿颜色变化来观察。

相似文献

1
Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles.
Biomaterials. 2011 Mar;32(7):1957-66. doi: 10.1016/j.biomaterials.2010.11.013. Epub 2010 Nov 30.
2
Hydrosilylated porous silicon particles function as an intravitreal drug delivery system for daunorubicin.
J Ocul Pharmacol Ther. 2013 Jun;29(5):493-500. doi: 10.1089/jop.2012.0205. Epub 2013 Feb 28.
3
Monitoring of degradation of porous silicon photonic crystals using digital photography.
Nanoscale Res Lett. 2014 Aug 21;9(1):410. doi: 10.1186/1556-276X-9-410. eCollection 2014.
4
Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon.
J Control Release. 2014 Mar 28;178:46-54. doi: 10.1016/j.jconrel.2014.01.003. Epub 2014 Jan 11.
5
A sustained intravitreal drug delivery system with remote real time monitoring capability.
Acta Biomater. 2015 Sep;24:309-21. doi: 10.1016/j.actbio.2015.06.012. Epub 2015 Jun 15.
6
Oxidized porous silicon particles covalently grafted with daunorubicin as a sustained intraocular drug delivery system.
Invest Ophthalmol Vis Sci. 2013 Feb 1;54(2):1268-79. doi: 10.1167/iovs.12-11172.
7
Suitability of porous silicon microparticles for the long-term delivery of redox-active therapeutics.
Chem Commun (Camb). 2011 May 28;47(20):5699-701. doi: 10.1039/c1cc10993f. Epub 2011 Apr 18.
8
Porous silicon in drug delivery devices and materials.
Adv Drug Deliv Rev. 2008 Aug 17;60(11):1266-1277. doi: 10.1016/j.addr.2008.03.017. Epub 2008 Apr 10.
9
Surface engineering of porous silicon microparticles for intravitreal sustained delivery of rapamycin.
Invest Ophthalmol Vis Sci. 2015 Jan 22;56(2):1070-80. doi: 10.1167/iovs.14-15997.

引用本文的文献

1
Recent advances in porous nanomaterials-based drug delivery systems for cancer immunotherapy.
J Nanobiotechnology. 2022 Jun 14;20(1):277. doi: 10.1186/s12951-022-01489-4.
2
Optically Active Nanomaterials for Bioimaging and Targeted Therapy.
Front Bioeng Biotechnol. 2019 Nov 15;7:320. doi: 10.3389/fbioe.2019.00320. eCollection 2019.
4
Electrochemical Engineering of Nanoporous Materials.
Nanomaterials (Basel). 2018 Sep 6;8(9):691. doi: 10.3390/nano8090691.
6
Self-Reporting Photoluminescent Porous Silicon Microparticles for Drug Delivery.
ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3200-3209. doi: 10.1021/acsami.7b09071. Epub 2018 Jan 16.
8
A sustained intravitreal drug delivery system with remote real time monitoring capability.
Acta Biomater. 2015 Sep;24:309-21. doi: 10.1016/j.actbio.2015.06.012. Epub 2015 Jun 15.
9
Protection and Delivery of Anthelmintic Protein Cry5B to Nematodes Using Mesoporous Silicon Particles.
ACS Nano. 2015 Jun 23;9(6):6158-67. doi: 10.1021/acsnano.5b01426. Epub 2015 May 20.

本文引用的文献

1
Polymeric nanoparticulate system: a potential approach for ocular drug delivery.
J Control Release. 2009 May 21;136(1):2-13. doi: 10.1016/j.jconrel.2008.12.018. Epub 2009 Feb 3.
2
Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles.
Anal Chem. 2009 Apr 1;81(7):2618-25. doi: 10.1021/ac802538x.
3
The biocompatibility of porous silicon in tissues of the eye.
Biomaterials. 2009 May;30(15):2873-80. doi: 10.1016/j.biomaterials.2009.02.008. Epub 2009 Feb 28.
4
Biodegradable luminescent porous silicon nanoparticles for in vivo applications.
Nat Mater. 2009 Apr;8(4):331-6. doi: 10.1038/nmat2398. Epub 2009 Feb 22.
6
Porous silicon in drug delivery devices and materials.
Adv Drug Deliv Rev. 2008 Aug 17;60(11):1266-1277. doi: 10.1016/j.addr.2008.03.017. Epub 2008 Apr 10.
7
Ocular novel drug delivery: impacts of membranes and barriers.
Expert Opin Drug Deliv. 2008 May;5(5):567-81. doi: 10.1517/17425247.5.5.567.
9
Nanotechnology in ocular drug delivery.
Drug Discov Today. 2008 Feb;13(3-4):144-51. doi: 10.1016/j.drudis.2007.10.021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验