Suppr超能文献

一种在生化网络中识别潜在药物靶点的概率方法。

A probabilistic approach to identify putative drug targets in biochemical networks.

机构信息

Doctoral Training Centre Integrative Systems Biology from Molecules to Life, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.

出版信息

J R Soc Interface. 2011 Jun 6;8(59):880-95. doi: 10.1098/rsif.2010.0540. Epub 2010 Dec 1.

Abstract

Network-based drug design holds great promise in clinical research as a way to overcome the limitations of traditional approaches in the development of drugs with high efficacy and low toxicity. This novel strategy aims to study how a biochemical network as a whole, rather than its individual components, responds to specific perturbations in different physiological conditions. Proteins exerting little control over normal cells and larger control over altered cells may be considered as good candidates for drug targets. The application of network-based drug design would greatly benefit from using an explicit computational model describing the dynamics of the system under investigation. However, creating a fully characterized kinetic model is not an easy task, even for relatively small networks, as it is still significantly hampered by the lack of data about kinetic mechanisms and parameters values. Here, we propose a Monte Carlo approach to identify the differences between flux control profiles of a metabolic network in different physiological states, when information about the kinetics of the system is partially or totally missing. Based on experimentally accessible information on metabolic phenotypes, we develop a novel method to determine probabilistic differences in the flux control coefficients between the two observable phenotypes. Knowledge of how differences in flux control are distributed among the different enzymatic steps is exploited to identify points of fragility in one of the phenotypes. Using a prototypical cancerous phenotype as an example, we demonstrate how our approach can assist researchers in developing compounds with high efficacy and low toxicity.

摘要

网络药物设计在临床研究中具有很大的应用前景,它可以克服传统药物开发方法在提高疗效和降低毒性方面的局限性。这种新策略旨在研究在不同生理条件下,生物化学网络作为一个整体,而不是其单个组件,是如何对特定干扰做出反应的。对正常细胞影响较小、对异常细胞影响较大的蛋白质可以被认为是药物靶点的良好候选物。网络药物设计的应用将极大地受益于使用一个明确的计算模型来描述所研究系统的动力学。然而,即使对于相对较小的网络,创建一个完全特征化的动力学模型也不是一件容易的事,因为它仍然受到缺乏动力学机制和参数值数据的严重阻碍。在这里,我们提出了一种蒙特卡罗方法,用于识别在部分或完全缺乏系统动力学信息的情况下,不同生理状态下代谢网络通量控制分布的差异。基于对代谢表型的实验可及信息,我们开发了一种新的方法来确定两种可观察表型之间通量控制系数的概率差异。利用在不同酶促步骤之间通量控制差异的分布知识,我们可以识别出其中一个表型的脆弱点。使用典型的癌变表型作为一个例子,我们展示了我们的方法如何帮助研究人员开发高效低毒的化合物。

相似文献

1
A probabilistic approach to identify putative drug targets in biochemical networks.
J R Soc Interface. 2011 Jun 6;8(59):880-95. doi: 10.1098/rsif.2010.0540. Epub 2010 Dec 1.
2
Monte-Carlo modeling of the central carbon metabolism of Lactococcus lactis: insights into metabolic regulation.
PLoS One. 2014 Sep 30;9(9):e106453. doi: 10.1371/journal.pone.0106453. eCollection 2014.
5
Estimating the size of the solution space of metabolic networks.
BMC Bioinformatics. 2008 May 19;9:240. doi: 10.1186/1471-2105-9-240.
6
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
7
Metabolic Network Reconstructions to Predict Drug Targets and Off-Target Effects.
Methods Mol Biol. 2020;2088:315-330. doi: 10.1007/978-1-0716-0159-4_14.
9
Diverse ways of perturbing the human arachidonic acid metabolic network to control inflammation.
Acc Chem Res. 2015 Aug 18;48(8):2242-50. doi: 10.1021/acs.accounts.5b00226. Epub 2015 Aug 3.
10
Screening drug target combinations in disease-related molecular networks.
BMC Bioinformatics. 2019 May 1;20(Suppl 7):198. doi: 10.1186/s12859-019-2730-8.

引用本文的文献

1
Structural Thermokinetic Modelling.
Metabolites. 2022 May 11;12(5):434. doi: 10.3390/metabo12050434.
2
Generalized Structural Kinetic Modeling: A Survey and Guide.
Front Mol Biosci. 2022 Apr 29;9:825052. doi: 10.3389/fmolb.2022.825052. eCollection 2022.
3
Uncertainty reduction in biochemical kinetic models: Enforcing desired model properties.
PLoS Comput Biol. 2019 Aug 20;15(8):e1007242. doi: 10.1371/journal.pcbi.1007242. eCollection 2019 Aug.
4
Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.
J R Soc Interface. 2016 Apr;13(117). doi: 10.1098/rsif.2015.1046. Epub 2016 Apr 13.
5
Computational strategies for a system-level understanding of metabolism.
Metabolites. 2014 Nov 24;4(4):1034-87. doi: 10.3390/metabo4041034.
6
Monte-Carlo modeling of the central carbon metabolism of Lactococcus lactis: insights into metabolic regulation.
PLoS One. 2014 Sep 30;9(9):e106453. doi: 10.1371/journal.pone.0106453. eCollection 2014.
7
What can we learn from global sensitivity analysis of biochemical systems?
PLoS One. 2013 Nov 14;8(11):e79244. doi: 10.1371/journal.pone.0079244. eCollection 2013.
8
Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery.
Drug Discov Today. 2014 Feb;19(2):171-82. doi: 10.1016/j.drudis.2013.07.014. Epub 2013 Jul 26.
10
A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes.
FEBS Lett. 2013 Sep 2;587(17):2832-41. doi: 10.1016/j.febslet.2013.06.043. Epub 2013 Jul 4.

本文引用的文献

1
THE METABOLISM OF TUMORS IN THE BODY.
J Gen Physiol. 1927 Mar 7;8(6):519-30. doi: 10.1085/jgp.8.6.519.
2
(13)C-based metabolic flux analysis.
Nat Protoc. 2009;4(6):878-92. doi: 10.1038/nprot.2009.58. Epub 2009 May 21.
3
Insights into plant metabolic networks from steady-state metabolic flux analysis.
Biochimie. 2009 Jun;91(6):697-702. doi: 10.1016/j.biochi.2009.01.004.
6
Use of randomized sampling for analysis of metabolic networks.
J Biol Chem. 2009 Feb 27;284(9):5457-61. doi: 10.1074/jbc.R800048200. Epub 2008 Oct 20.
7
Ensemble modeling of metabolic networks.
Biophys J. 2008 Dec 15;95(12):5606-17. doi: 10.1529/biophysj.108.135442. Epub 2008 Sep 26.
9
Group contribution method for thermodynamic analysis of complex metabolic networks.
Biophys J. 2008 Aug;95(3):1487-99. doi: 10.1529/biophysj.107.124784.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验