Materials Research Laboratory, University of California, Santa Barbara, California 93105, USA.
Nat Chem. 2010 Feb;2(2):138-45. doi: 10.1038/nchem.478. Epub 2009 Dec 20.
Microarray technology has become extremely useful in expediting the investigation of large libraries of materials in a variety of biomedical applications, such as in DNA chips, protein and cellular microarrays. In the development of cellular microarrays, traditional high-throughput printing strategies on stiff, glass substrates and non-covalent attachment methods are limiting. We have developed a facile strategy to fabricate multifunctional high-throughput microarrays embedded at the surface of a hydrogel substrate using thiol-ene chemistry. This user-friendly method provides a platform for the immobilization of a combination of bioactive and diagnostic molecules, such as peptides and dyes, at the surface of poly(ethylene glycol)-based hydrogels. The robust and orthogonal nature of thiol-ene chemistry allows for a range of covalent attachment strategies in a fast and reliable manner, and two complementary strategies for the attachment of active molecules are demonstrated.
微阵列技术在加速各种生物医学应用中对大量材料文库的研究方面变得非常有用,例如在 DNA 芯片、蛋白质和细胞微阵列中。在细胞微阵列的开发中,传统的刚性玻璃基底上的高通量打印策略和非共价附着方法受到限制。我们已经开发了一种简便的策略,使用硫醇-烯化学在水凝胶基底的表面制造多功能高通量微阵列。这种用户友好的方法为固定化提供了一个平台,可将生物活性和诊断分子(如肽和染料)组合固定在基于聚乙二醇的水凝胶表面。硫醇-烯化学的坚固性和正交性允许以快速可靠的方式采用一系列共价附着策略,并且展示了两种用于附着活性分子的互补策略。