Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.
PLoS Comput Biol. 2010 Nov 24;6(11):e1001009. doi: 10.1371/journal.pcbi.1001009.
Biomolecular pathways are built from diverse types of pairwise interactions, ranging from physical protein-protein interactions and modifications to indirect regulatory relationships. One goal of systems biology is to bridge three aspects of this complexity: the growing body of high-throughput data assaying these interactions; the specific interactions in which individual genes participate; and the genome-wide patterns of interactions in a system of interest. Here, we describe methodology for simultaneously predicting specific types of biomolecular interactions using high-throughput genomic data. This results in a comprehensive compendium of whole-genome networks for yeast, derived from ∼3,500 experimental conditions and describing 30 interaction types, which range from general (e.g. physical or regulatory) to specific (e.g. phosphorylation or transcriptional regulation). We used these networks to investigate molecular pathways in carbon metabolism and cellular transport, proposing a novel connection between glycogen breakdown and glucose utilization supported by recent publications. Additionally, 14 specific predicted interactions in DNA topological change and protein biosynthesis were experimentally validated. We analyzed the systems-level network features within all interactomes, verifying the presence of small-world properties and enrichment for recurring network motifs. This compendium of physical, synthetic, regulatory, and functional interaction networks has been made publicly available through an interactive web interface for investigators to utilize in future research at http://function.princeton.edu/bioweaver/.
生物分子途径是由多种类型的成对相互作用构建而成的,这些相互作用的范围从物理蛋白质-蛋白质相互作用和修饰到间接的调节关系。系统生物学的一个目标是弥合这三个方面的复杂性:不断增加的高通量数据检测这些相互作用的数量;个体基因参与的特定相互作用;以及感兴趣系统中的基因组范围内的相互作用模式。在这里,我们描述了一种使用高通量基因组数据同时预测特定类型生物分子相互作用的方法。这导致了来自约 3500 种实验条件的酵母全基因组网络的综合纲要,描述了 30 种相互作用类型,从一般(例如物理或调节)到特定(例如磷酸化或转录调节)。我们使用这些网络来研究碳代谢和细胞运输中的分子途径,提出了最近出版物支持的糖原分解和葡萄糖利用之间的新联系。此外,DNA 拓扑变化和蛋白质生物合成中的 14 个特定预测相互作用已通过实验验证。我们分析了所有相互作用组中的系统级网络特征,验证了小世界属性和重复网络基元的富集。通过交互式网络界面,将物理、合成、调节和功能相互作用网络的这一纲要公开提供给研究人员,以便在未来的研究中使用,网址为 http://function.princeton.edu/bioweaver/。