Suppr超能文献

使用双聚类和贝叶斯网络构建基因调控网络。

Construction of gene regulatory networks using biclustering and Bayesian networks.

作者信息

Alakwaa Fadhl M, Solouma Nahed H, Kadah Yasser M

机构信息

University of Science and Technology, Sana'a, Yemen.

出版信息

Theor Biol Med Model. 2011 Oct 22;8:39. doi: 10.1186/1742-4682-8-39.

Abstract

BACKGROUND

Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to elucidate disease ontology fully and to reduce the cost of drug development, gene regulatory networks (GRNs) have to be constructed. During the last decade, many GRN inference algorithms based on genome-wide data have been developed to unravel the complexity of gene regulation. Time series transcriptomic data measured by genome-wide DNA microarrays are traditionally used for GRN modelling. One of the major problems with microarrays is that a dataset consists of relatively few time points with respect to the large number of genes. Dimensionality is one of the interesting problems in GRN modelling.

RESULTS

In this paper, we develop a biclustering function enrichment analysis toolbox (BicAT-plus) to study the effect of biclustering in reducing data dimensions. The network generated from our system was validated via available interaction databases and was compared with previous methods. The results revealed the performance of our proposed method.

CONCLUSIONS

Because of the sparse nature of GRNs, the results of biclustering techniques differ significantly from those of previous methods.

摘要

背景

理解复杂生命系统中的基因相互作用可被视为系统生物学革命的最终目标。因此,为了全面阐明疾病本体并降低药物开发成本,必须构建基因调控网络(GRN)。在过去十年中,已经开发了许多基于全基因组数据的GRN推理算法来揭示基因调控的复杂性。传统上,通过全基因组DNA微阵列测量的时间序列转录组数据用于GRN建模。微阵列的主要问题之一是,相对于大量基因,数据集包含的时间点相对较少。维度是GRN建模中一个有趣的问题。

结果

在本文中,我们开发了一个双聚类功能富集分析工具箱(BicAT-plus)来研究双聚类在降低数据维度方面的作用。从我们的系统生成的网络通过可用的相互作用数据库进行了验证,并与以前的方法进行了比较。结果揭示了我们提出的方法的性能。

结论

由于GRN的稀疏性质,双聚类技术的结果与以前的方法有显著差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验