Suppr超能文献

心脏发育、肥大和衰竭的基因共表达网络拓扑结构。

Gene coexpression network topology of cardiac development, hypertrophy, and failure.

作者信息

Dewey Frederick E, Perez Marco V, Wheeler Matthew T, Watt Clifton, Spin Joshua, Langfelder Peter, Horvath Steve, Hannenhalli Sridhar, Cappola Thomas P, Ashley Euan A

机构信息

Department of Internal Medicine and the Division of Cardiovascular Medicine, Stanford Hospital and Clinics, and Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

Circ Cardiovasc Genet. 2011 Feb;4(1):26-35. doi: 10.1161/CIRCGENETICS.110.941757. Epub 2010 Dec 2.

Abstract

BACKGROUND

Network analysis techniques allow a more accurate reflection of underlying systems biology to be realized than traditional unidimensional molecular biology approaches. Using gene coexpression network analysis, we define the gene expression network topology of cardiac hypertrophy and failure and the extent of recapitulation of fetal gene expression programs in failing and hypertrophied adult myocardium.

METHODS AND RESULTS

We assembled all myocardial transcript data in the Gene Expression Omnibus (n=1617). Because hierarchical analysis revealed species had primacy over disease clustering, we focused this analysis on the most complete (murine) dataset (n=478). Using gene coexpression network analysis, we derived functional modules, regulatory mediators, and higher-order topological relationships between genes and identified 50 gene coexpression modules in developing myocardium that were not present in normal adult tissue. We found that known gene expression markers of myocardial adaptation were members of upregulated modules but not hub genes. We identified ZIC2 as a novel transcription factor associated with coexpression modules common to developing and failing myocardium. Of 50 fetal gene coexpression modules, 3 (6%) were reproduced in hypertrophied myocardium and 7 (14%) were reproduced in failing myocardium. One fetal module was common to both failing and hypertrophied myocardium.

CONCLUSIONS

Network modeling allows systems analysis of cardiovascular development and disease. Although we did not find evidence for a global coordinated program of fetal gene expression in adult myocardial adaptation, our analysis revealed specific gene expression modules active during both development and disease and specific candidates for their regulation.

摘要

背景

与传统的一维分子生物学方法相比,网络分析技术能够更准确地反映潜在的系统生物学特征。通过基因共表达网络分析,我们定义了心肌肥大和衰竭的基因表达网络拓扑结构,以及成年心肌肥大和衰竭时胎儿基因表达程序的重现程度。

方法与结果

我们收集了基因表达综合数据库(Gene Expression Omnibus)中的所有心肌转录数据(n = 1617)。由于层次分析显示物种对疾病聚类具有首要影响,我们将此分析重点放在最完整的(小鼠)数据集上(n = 478)。通过基因共表达网络分析,我们推导了功能模块、调控介质以及基因之间的高阶拓扑关系,并在发育中的心肌中鉴定出50个正常成年组织中不存在的基因共表达模块。我们发现,已知的心肌适应性基因表达标志物是上调模块的成员,但不是中心基因。我们将ZIC2鉴定为一种与发育中和衰竭心肌共有的共表达模块相关的新型转录因子。在50个胎儿基因共表达模块中,3个(6%)在肥大心肌中重现,7个(14%)在衰竭心肌中重现。有一个胎儿模块在衰竭和肥大心肌中均有重现。

结论

网络建模允许对心血管发育和疾病进行系统分析。虽然我们没有找到证据支持成年心肌适应性中存在全局协调的胎儿基因表达程序,但我们的分析揭示了在发育和疾病过程中均活跃的特定基因表达模块及其调控的特定候选因子。

相似文献

2
Toward a holistic view of transcriptional regulation.迈向转录调控的整体观
Circ Cardiovasc Genet. 2011 Feb;4(1):2-3. doi: 10.1161/CIRCGENETICS.111.959452.
4
Transcriptional regulation of the fetal cardiac gene program.胎儿心脏基因程序的转录调控。
J Pharmacol Sci. 2012;119(3):198-203. doi: 10.1254/jphs.12r04cp. Epub 2012 Jun 13.

引用本文的文献

4
6
Systems biology in cardiovascular disease: a multiomics approach.心血管疾病中的系统生物学:一种多组学方法。
Nat Rev Cardiol. 2021 May;18(5):313-330. doi: 10.1038/s41569-020-00477-1. Epub 2020 Dec 18.

本文引用的文献

1
Differentiation of pharyngeal endoderm from mouse embryonic stem cell.从鼠胚胎干细胞中分化出咽内胚层。
Stem Cells Dev. 2010 Nov;19(11):1735-43. doi: 10.1089/scd.2009.0466. Epub 2010 Sep 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验