Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, USA.
Nat Protoc. 2010 Dec;5(12):1867-87. doi: 10.1038/nprot.2010.139. Epub 2010 Nov 4.
We describe a detailed procedure to create photolabile, polyethylene glycol (PEG)-based hydrogels and manipulate material properties in situ. The cytocompatible chemistry and degradation process enable dynamic, tunable changes for applications in two-dimensional (2D) or 3D cell culture. The materials are created by synthesizing an o-nitrobenzylether-based photodegradable monomer that can be coupled to primary amines. In this study, we provide coupling procedures to PEG-bis-amine to form a photodegradable cross-linker or to the fibronectin-derived peptide RGDS to form a photoreleasable tether. Hydrogels are synthesized with the photodegradable cross-linker in the presence or absence of cells, allowing direct encapsulation or seeding on surfaces. Cell-material interactions can be probed in 2D or 3D by spatiotemporally controlling the gel microenvironment, which allows unique experiments to be performed to monitor cell response to changes in their niche. Degradation is readily achieved with cytocompatible wavelengths of low-intensity flood irradiation (365-420 nm) in minutes or with high-intensity laser irradiation (405 nm) in seconds. In this protocol, synthesis and purification of photodegradable monomers take approximately 2 weeks, but the process can be substantially shortened by purchasing the o-nitrobenzylether precursor. Preparation of sterile solutions for hydrogel fabrication takes hours, whereas the reaction to form the final hydrogel is complete in minutes. Hydrogel degradation occurs on demand, in seconds to minutes, with user-directed light exposure. This comprehensive protocol is useful for controlling peptide presentation and substrate modulus during cell culture on or within an elastic matrix. These PEG-based materials are useful for probing the dynamic influence of cell-cell and cell-material interactions on cell function in 2D or 3D. Although other protocols are available for controlling peptide presentation or modulus, few allow manipulation of material properties in situ and in the presence of cells down to the micrometer scale.
我们描述了一种详细的方法来创建光不稳定的、基于聚乙二醇(PEG)的水凝胶,并可现场操作材料性能。这种细胞相容性化学和降解过程使材料具有动态、可调的变化,可应用于二维(2D)或三维(3D)细胞培养。该材料通过合成一种基于邻硝基苄基醚的光降解单体来制备,该单体可与伯胺偶联。在本研究中,我们提供了将光降解单体与 PEG-双胺偶联的方法,以形成光降解交联剂,或者与纤维连接蛋白衍生的肽 RGDS 偶联,形成光释放连接物。在存在或不存在细胞的情况下,用光降解交联剂合成水凝胶,可直接将细胞包埋或接种到表面上。通过时空控制凝胶微环境,可在 2D 或 3D 中探测细胞与材料的相互作用,这允许进行独特的实验来监测细胞对其微环境变化的反应。通过低强度漫射辐照(365-420nm)几分钟或高强度激光辐照(405nm)几秒钟,即可实现细胞相容性的降解。在这个方案中,光降解单体的合成和纯化大约需要 2 周的时间,但如果购买邻硝基苄基醚前体,可以大大缩短这个过程。用于水凝胶制备的无菌溶液的制备需要数小时,而最终水凝胶的反应在几分钟内完成。水凝胶的降解可按需进行,在几秒钟到几分钟内,通过用户指导的光暴露。这个全面的方案对于控制细胞培养过程中或在弹性基质内的肽呈现和基质模量非常有用。这些基于 PEG 的材料可用于在 2D 或 3D 中探测细胞-细胞和细胞-材料相互作用对细胞功能的动态影响。虽然有其他控制肽呈现或模量的方案,但很少有方案能够在现场并在细胞存在的情况下,将材料性能在微尺度上进行操作。