Bakhtiani P A, El Youssef J, Duell A K, Branigan D L, Jacobs P G, Lasarev M R, Castle J R, Ward W K
Harold Schnitzer Diabetes Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239.
Harold Schnitzer Diabetes Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239.
J Diabetes Complications. 2015 Jan-Feb;29(1):93-8. doi: 10.1016/j.jdiacomp.2014.09.001. Epub 2014 Sep 16.
In bi-hormonal closed-loop systems for treatment of diabetes, glucagon sometimes fails to prevent hypoglycemia. We evaluated glucagon responses during several closed-loop studies to determine factors, such as gain factors, responsible for glucagon success and failure.
We extracted data from four closed-loop studies, examining blood glucose excursions over the 50min after each glucagon dose and defining hypoglycemic failure as glucose values<60 mg/dl. Secondly, we evaluated hyperglycemic excursions within the same period, where glucose was>180 mg/dl. We evaluated several factors for association with rates of hypoglycemic failure or hyperglycemic excursion. These factors included age, weight, HbA1c, duration of diabetes, gender, automation of glucagon delivery, glucagon dose, proportional and derivative errors (PE and DE), insulin on board (IOB), night vs. day delivery, and point sensor accuracy.
We analyzed a total of 251 glucagon deliveries during 59 closed-loop experiments performed on 48 subjects. Glucagon successfully maintained glucose within target (60-180 mg/dl) in 195 (78%) of instances with 40 (16%) hypoglycemic failures and 16 (6%) hyperglycemic excursions. A multivariate logistic regression model identified PE (p<0.001), DE (p<0.001), and IOB (p<0.001) as significant determinants of success in terms of avoiding hypoglycemia. Using a model of glucagon absorption and action, simulations suggested that the success rate for glucagon would be improved by giving an additional 0.8μg/kg.
We conclude that glucagon fails to prevent hypoglycemia when it is given at a low glucose threshold and when glucose is falling steeply. We also confirm that high IOB significantly increases the risk for glucagon failures. Tuning of glucagon subsystem parameters may help reduce this risk.
在用于治疗糖尿病的双激素闭环系统中,胰高血糖素有时无法预防低血糖。我们在多项闭环研究中评估了胰高血糖素反应,以确定诸如增益因子等导致胰高血糖素成功或失败的因素。
我们从四项闭环研究中提取数据,检查每次注射胰高血糖素后50分钟内的血糖波动情况,并将血糖值<60mg/dl定义为低血糖失败。其次,我们评估了同一时期内血糖>180mg/dl时的高血糖波动情况。我们评估了几个与低血糖失败率或高血糖波动相关的因素。这些因素包括年龄、体重、糖化血红蛋白、糖尿病病程、性别、胰高血糖素给药自动化、胰高血糖素剂量、比例误差和微分误差(PE和DE)、体内胰岛素量(IOB)、夜间与白天给药以及点传感器准确性。
我们对48名受试者进行的59次闭环实验中的251次胰高血糖素给药进行了分析。在195次(78%)情况下,胰高血糖素成功将血糖维持在目标范围内(60 - 180mg/dl),40次(16%)出现低血糖失败,16次(6%)出现高血糖波动。多因素逻辑回归模型确定,就避免低血糖而言,PE(p<0.001)、DE(p<0.001)和IOB(p<0.001)是成功的重要决定因素。使用胰高血糖素吸收和作用模型进行模拟表明,额外给予0.8μg/kg胰高血糖素可提高其成功率。
我们得出结论,当在低葡萄糖阈值且血糖急剧下降时给予胰高血糖素,它无法预防低血糖。我们还证实,高IOB显著增加了胰高血糖素失败的风险。调整胰高血糖素子系统参数可能有助于降低这种风险。