Suppr超能文献

根霉小孢囊菌内共生菌伯克霍尔德氏菌的全基因组序列。

Complete genome sequence of Burkholderia rhizoxinica, an Endosymbiont of Rhizopus microsporus.

机构信息

Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany.

出版信息

J Bacteriol. 2011 Feb;193(3):783-4. doi: 10.1128/JB.01318-10. Epub 2010 Dec 3.

Abstract

Burkholderia rhizoxinica is an intracellular symbiont of the phytopathogenic fungus Rhizopus microsporus. The vertically transmitted endosymbiont not only delivers the antimitotic macrolide rhizoxin to its host but is also essential for vegetative spore formation of the fungus. To shed light on the genetic equipment of this model organism, we sequenced the whole genome of B. rhizoxinica HKI 0454, thus providing the first genomic insight into an intracellular mutualist of a fungal species. The 3.75-Mb genome consists of a chromosome and two strain-specific plasmids. The primary metabolism appears to be specialized for the uptake of fungal metabolites. Besides the rhizoxin biosynthesis gene cluster, there are 14 loci coding for nonribosomal peptide synthetase (NRPS) assembly lines, which represent novel targets for genomic mining of cryptic natural products. Furthermore, the endosymbionts are equipped with a repertoire of virulence-related factors, which can now be studied to elucidate molecular mechanisms underlying bacterial-fungal interaction.

摘要

伯克霍尔德氏菌是植物病原菌根霉的一种细胞内共生体。这种垂直传播的内共生体不仅向其宿主输送抗有丝分裂的大环内酯类化合物雷佐霉素,而且对真菌的营养孢子形成也是必不可少的。为了阐明这个模式生物的遗传装置,我们对伯克霍尔德氏菌 HKI 0454 的整个基因组进行了测序,从而首次深入了解了真菌物种的细胞内共生体。这个 3.75-Mb 的基因组由一条染色体和两个菌株特异性的质粒组成。主要代谢途径似乎专门用于摄取真菌代谢物。除了雷佐霉素生物合成基因簇外,还有 14 个编码非核糖体肽合成酶 (NRPS) 组装线的基因座,这代表了对隐生天然产物进行基因组挖掘的新目标。此外,内共生体还配备了一系列与毒力相关的因子,现在可以对这些因子进行研究,以阐明细菌-真菌相互作用的分子机制。

相似文献

1
Complete genome sequence of Burkholderia rhizoxinica, an Endosymbiont of Rhizopus microsporus.
J Bacteriol. 2011 Feb;193(3):783-4. doi: 10.1128/JB.01318-10. Epub 2010 Dec 3.
2
Evolution of an endofungal lifestyle: Deductions from the Burkholderia rhizoxinica genome.
BMC Genomics. 2011 May 4;12:210. doi: 10.1186/1471-2164-12-210.
4
Toxin-Producing Endosymbionts Shield Pathogenic Fungus against Micropredators.
mBio. 2022 Oct 26;13(5):e0144022. doi: 10.1128/mbio.01440-22. Epub 2022 Aug 25.
5
Genomics-Driven Discovery of a Symbiont-Specific Cyclopeptide from Bacteria Residing in the Rice Seedling Blight Fungus.
Chembiochem. 2018 Oct 18;19(20):2167-2172. doi: 10.1002/cbic.201800400. Epub 2018 Oct 2.
6
Genome Mining Reveals Endopyrroles from a Nonribosomal Peptide Assembly Line Triggered in Fungal-Bacterial Symbiosis.
ACS Chem Biol. 2019 Aug 16;14(8):1811-1818. doi: 10.1021/acschembio.9b00406. Epub 2019 Jul 22.
8
Genomics-driven discovery of a linear lipopeptide promoting host colonization by endofungal bacteria.
Org Biomol Chem. 2018 Sep 26;16(37):8345-8352. doi: 10.1039/c8ob01515e.
9
Endofungal bacterium controls its host by an hrp type III secretion system.
ISME J. 2011 Feb;5(2):252-61. doi: 10.1038/ismej.2010.126. Epub 2010 Aug 19.

引用本文的文献

1
Endofungal bacteria as hidden facilitators of biotic interactions.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf128.
2
Prevalence and diversity of TAL effector-like proteins in fungal endosymbiotic spp.
Microb Genom. 2024 Jun;10(6). doi: 10.1099/mgen.0.001261.
4
Transcription activator-like effector protects bacterial endosymbionts from entrapment within fungal hyphae.
Curr Biol. 2023 Jul 10;33(13):2646-2656.e4. doi: 10.1016/j.cub.2023.05.028. Epub 2023 Jun 9.
5
The Wheat Head Blight Pathogen Can Recruit Collaborating Bacteria from Soil.
Cells. 2022 Sep 26;11(19):3004. doi: 10.3390/cells11193004.
7
Genetic Diversity of Type 3 Secretion System in and Links With Plant Host Adaptation.
Front Microbiol. 2021 Oct 20;12:761215. doi: 10.3389/fmicb.2021.761215. eCollection 2021.
8
An Overview of Metabolic Activity, Beneficial and Pathogenic Aspects of Spp.
Metabolites. 2021 May 17;11(5):321. doi: 10.3390/metabo11050321.
9
Pan-Genome Analysis Reveals Host-Specific Functional Divergences in .
Microorganisms. 2021 May 22;9(6):1123. doi: 10.3390/microorganisms9061123.
10
Symbiotic Associations: Key Factors That Determine Physiology and Lipid Accumulation in Oleaginous Microorganisms.
Front Microbiol. 2020 Dec 16;11:555312. doi: 10.3389/fmicb.2020.555312. eCollection 2020.

本文引用的文献

1
Endofungal bacterium controls its host by an hrp type III secretion system.
ISME J. 2011 Feb;5(2):252-61. doi: 10.1038/ismej.2010.126. Epub 2010 Aug 19.
3
Endofungal bacteria as producers of mycotoxins.
Trends Microbiol. 2009 Dec;17(12):570-6. doi: 10.1016/j.tim.2009.09.003. Epub 2009 Oct 1.
4
Global distribution and evolution of a toxinogenic Burkholderia-Rhizopus symbiosis.
Appl Environ Microbiol. 2009 May;75(9):2982-6. doi: 10.1128/AEM.01765-08. Epub 2009 Mar 13.
5
Evolution of host resistance in a toxin-producing bacterial-fungal alliance.
ISME J. 2008 Jun;2(6):632-41. doi: 10.1038/ismej.2008.19. Epub 2008 Feb 28.
7
Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism.
Curr Biol. 2007 May 1;17(9):773-7. doi: 10.1016/j.cub.2007.03.039. Epub 2007 Apr 5.
10
Pathogenic fungus harbours endosymbiotic bacteria for toxin production.
Nature. 2005 Oct 6;437(7060):884-8. doi: 10.1038/nature03997.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验