Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany.
Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae074.
The endosymbiosis between the pathogenic fungus Rhizopus microsporus and the toxin-producing bacterium Mycetohabitans rhizoxinica represents a unique example of host control by an endosymbiont. Fungal sporulation strictly depends on the presence of endosymbionts as well as bacterially produced secondary metabolites. However, an influence of primary metabolites on host control remained unexplored. Recently, we discovered that M. rhizoxinica produces FO and 3PG-F420, a derivative of the specialized redox cofactor F420. Whether FO/3PG-F420 plays a role in the symbiosis has yet to be investigated. Here, we report that FO, the precursor of 3PG-F420, is essential to the establishment of a stable symbiosis. Bioinformatic analysis revealed that the genetic inventory to produce cofactor 3PG-F420 is conserved in the genomes of eight endofungal Mycetohabitans strains. By developing a CRISPR/Cas-assisted base editing strategy for M. rhizoxinica, we generated mutant strains deficient in 3PG-F420 (M. rhizoxinica ΔcofC) and in both FO and 3PG-F420 (M. rhizoxinica ΔfbiC). Co-culture experiments demonstrated that the sporulating phenotype of apo-symbiotic R. microsporus is maintained upon reinfection with wild-type M. rhizoxinica or M. rhizoxinica ΔcofC. In contrast, R. microsporus is unable to sporulate when co-cultivated with M. rhizoxinica ΔfbiC, even though the fungus was observed by super-resolution fluorescence microscopy to be successfully colonized. Genetic and chemical complementation of the FO deficiency of M. rhizoxinica ΔfbiC led to restoration of fungal sporulation, signifying that FO is indispensable for establishing a functional symbiosis. Even though FO is known for its light-harvesting properties, our data illustrate an important role of FO in inter-kingdom communication.
致病真菌根毛霉和产毒细菌丝状真菌根霉之间的内共生关系代表了一种独特的内共生体控制宿主的例子。真菌孢子形成严格依赖于内共生体以及细菌产生的次生代谢物的存在。然而,初级代谢物对宿主控制的影响仍未被探索。最近,我们发现丝状真菌根霉产生 FO 和 3PG-F420,这是一种特殊氧化还原辅因子 F420 的衍生物。FO/3PG-F420 是否在共生关系中发挥作用仍有待研究。在这里,我们报告说,FO 是 3PG-F420 的前体,对建立稳定的共生关系是必不可少的。生物信息学分析表明,产生辅因子 3PG-F420 的基因库存在 8 株内生丝状真菌根霉的基因组中是保守的。通过为丝状真菌根霉开发一种 CRISPR/Cas 辅助的碱基编辑策略,我们生成了缺乏 3PG-F420(丝状真菌根霉 ΔcofC)和 FO 和 3PG-F420(丝状真菌根霉 ΔfbiC)的突变菌株。共培养实验表明,当与野生型丝状真菌根霉或丝状真菌根霉 ΔcofC 重新感染时,无共生体的根毛霉的孢子形成表型得以维持。相比之下,当与丝状真菌根霉 ΔfbiC 共培养时,根毛霉无法进行孢子形成,尽管通过超分辨率荧光显微镜观察到真菌成功定植。丝状真菌根霉 ΔfbiC 的 FO 缺陷的遗传和化学互补导致真菌孢子形成的恢复,这表明 FO 对于建立功能性共生关系是必不可少的。尽管 FO 以其光捕获特性而闻名,但我们的数据说明了 FO 在种间通讯中的重要作用。