Leibniz Institute for Natural Product Research and Infection Biology (HKI), Department of Biomolecular Chemistry, Beutenbergstr, 11a, 07745 Jena, Germany.
BMC Genomics. 2011 May 4;12:210. doi: 10.1186/1471-2164-12-210.
Burkholderia rhizoxinica is an intracellular symbiont of the phytopathogenic zygomycete Rhizopus microsporus, the causative agent of rice seedling blight. The endosymbiont produces the antimitotic macrolide rhizoxin for its host. It is vertically transmitted within vegetative spores and is essential for spore formation of the fungus. To shed light on the evolution and genetic potential of this model organism, we analysed the whole genome of B. rhizoxinica HKI 0454 - a type strain of endofungal Burkholderia species.
The genome consists of a structurally conserved chromosome and two plasmids. Compared to free-living Burkholderia species, the genome is smaller in size and harbors less transcriptional regulator genes. Instead, we observed accumulation of transposons over the genome. Prediction of primary metabolic pathways and transporters suggests that endosymbionts consume host metabolites like citrate, but might deliver some amino acids and cofactors to the host. The rhizoxin biosynthesis gene cluster shows evolutionary traces of horizontal gene transfer. Furthermore, we analysed gene clusters coding for nonribosomal peptide synthetases (NRPS). Notably, B. rhizoxinica lacks common genes which are dedicated to quorum sensing systems, but is equipped with a large number of virulence-related factors and putative type III effectors.
B. rhizoxinica is the first endofungal bacterium, whose genome has been sequenced. Here, we present models of evolution, metabolism and tools for host-symbiont interaction of the endofungal bacterium deduced from whole genome analyses. Genome size and structure suggest that B. rhizoxinica is in an early phase of adaptation to the intracellular lifestyle (genome in transition). By analysis of tranporters and metabolic pathways we predict how metabolites might be exchanged between the symbiont and its host. Gene clusters for biosynthesis of secondary metabolites represent novel targets for genomic mining of cryptic natural products. In silico analyses of virulence-associated genes, secreted proteins and effectors might inspire future studies on molecular mechanisms underlying bacterial-fungal interaction.
伯克霍尔德氏菌是植物病原菌根霉的一种细胞内共生体,也是导致水稻幼苗枯萎病的病原体。内共生菌为其宿主产生抗有丝分裂的大环内酯类化合物根霉素。它在营养孢子内垂直传播,对真菌孢子的形成至关重要。为了阐明这种模式生物的进化和遗传潜力,我们分析了伯克霍尔德氏菌 HKI 0454 的全基因组 - 内生伯克霍尔德氏菌属的一个模式菌株。
该基因组由一个结构保守的染色体和两个质粒组成。与自由生活的伯克霍尔德氏菌物种相比,该基因组的大小较小,转录调节基因较少。相反,我们观察到基因组中转座子的积累。对主要代谢途径和转运蛋白的预测表明,内共生体消耗宿主代谢物,如柠檬酸,但可能向宿主输送一些氨基酸和辅因子。根霉素生物合成基因簇显示出水平基因转移的进化痕迹。此外,我们还分析了编码非核糖体肽合成酶(NRPS)的基因簇。值得注意的是,伯克霍尔德氏菌缺乏专门用于群体感应系统的常见基因,但却配备了大量与毒力相关的因子和潜在的 III 型效应物。
伯克霍尔德氏菌是第一个被测序的内生真菌细菌。在这里,我们提出了从全基因组分析中推导出的内生真菌细菌的进化、代谢和宿主-共生体相互作用模型。基因组的大小和结构表明,伯克霍尔德氏菌正处于适应细胞内生活方式的早期阶段(基因组在过渡中)。通过对转运蛋白和代谢途径的分析,我们预测了代谢物如何在共生体和宿主之间进行交换。次生代谢产物生物合成基因簇代表了用于挖掘隐性天然产物的基因组挖掘的新靶点。对毒力相关基因、分泌蛋白和效应物的计算机分析可能为细菌-真菌相互作用的分子机制研究提供启示。