Sangamo BioSciences, Richmond, California, USA.
Nat Methods. 2011 Jan;8(1):74-9. doi: 10.1038/nmeth.1539. Epub 2010 Dec 5.
Zinc-finger nucleases (ZFNs) drive efficient genome editing by introducing a double-strand break into the targeted gene. Cleavage is induced when two custom-designed ZFNs heterodimerize upon binding DNA to form a catalytically active nuclease complex. The importance of this dimerization event for subsequent cleavage activity has stimulated efforts to engineer the nuclease interface to prevent undesired homodimerization. Here we report the development and application of a yeast-based selection system designed to functionally interrogate the ZFN dimer interface. We identified critical residues involved in dimerization through the isolation of cold-sensitive nuclease domains. We used these residues to engineer ZFNs that have superior cleavage activity while suppressing homodimerization. The improvements were portable to orthogonal domains, allowing the concomitant and independent cleavage of two loci using two different ZFN pairs. These ZFN architectures provide a general means for obtaining highly efficient and specific genome modification.
锌指核酸酶(ZFNs)通过在目标基因中引入双链断裂来实现高效的基因组编辑。当两个定制设计的 ZFN 结合 DNA 形成一个具有催化活性的核酸酶复合物时,就会诱导切割。这种二聚化事件对随后的切割活性的重要性激发了人们努力设计核酸酶界面以防止不必要的同源二聚化。在这里,我们报告了开发和应用基于酵母的选择系统的情况,该系统旨在对 ZFN 二聚体界面进行功能研究。我们通过分离冷敏感核酸酶结构域来鉴定参与二聚化的关键残基。我们使用这些残基来设计具有优越切割活性同时抑制同源二聚化的 ZFN。这些改进可移植到正交结构域,允许使用两对不同的 ZFN 同时且独立地切割两个基因座。这些 ZFN 结构为获得高效和特异性的基因组修饰提供了一种通用方法。