Hansen Keith, Coussens Matthew J, Sago Jack, Subramanian Shilpi, Gjoka Monika, Briner Dave
Emerging Technologies, Sigma Life Science.
J Vis Exp. 2012 Jun 14(64):e3304. doi: 10.3791/3304.
Genome editing is a powerful technique that can be used to elucidate gene function and the genetic basis of disease. Traditional gene editing methods such as chemical-based mutagenesis or random integration of DNA sequences confer indiscriminate genetic changes in an overall inefficient manner and require incorporation of undesirable synthetic sequences or use of aberrant culture conditions, potentially confusing biological study. By contrast, transient ZFN expression in a cell can facilitate precise, heritable gene editing in a highly efficient manner without the need for administration of chemicals or integration of synthetic transgenes. Zinc finger nucleases (ZFNs) are enzymes which bind and cut distinct sequences of double-stranded DNA (dsDNA). A functional CompoZr ZFN unit consists of two individual monomeric proteins that bind a DNA "half-site" of approximately 15-18 nucleotides (see Figure 1). When two ZFN monomers "home" to their adjacent target sites the DNA-cleavage domains dimerize and create a double-strand break (DSB) in the DNA. Introduction of ZFN-mediated DSBs in the genome lays a foundation for highly efficient genome editing. Imperfect repair of DSBs in a cell via the non-homologous end-joining (NHEJ) DNA repair pathway can result in small insertions and deletions (indels). Creation of indels within the gene coding sequence of a cell can result in frameshift and subsequent functional knockout of a gene locus at high efficiency. While this protocol describes the use of ZFNs to create a gene knockout, integration of transgenes may also be conducted via homology-directed repair at the ZFN cut site. The CompoZr Custom ZFN Service represents a systematic, comprehensive, and well-characterized approach to targeted gene editing for the scientific community with ZFN technology. Sigma scientists work closely with investigators to 1) perform due diligence analysis including analysis of relevant gene structure, biology, and model system pursuant to the project goals, 2) apply this knowledge to develop a sound targeting strategy, 3) then design, build, and functionally validate ZFNs for activity in a relevant cell line. The investigator receives positive control genomic DNA and primers, and ready-to-use ZFN reagents supplied in both plasmid DNA and in-vitro transcribed mRNA format. These reagents may then be delivered for transient expression in the investigator's cell line or cell type of choice. Samples are then tested for gene editing at the locus of interest by standard molecular biology techniques including PCR amplification, enzymatic digest, and electrophoresis. After positive signal for gene editing is detected in the initial population, cells are single-cell cloned and genotyped for identification of mutant clones/alleles.
基因组编辑是一种强大的技术,可用于阐明基因功能和疾病的遗传基础。传统的基因编辑方法,如基于化学的诱变或DNA序列的随机整合,会以整体低效的方式产生不加区分的基因变化,并且需要引入不想要的合成序列或使用异常的培养条件,这可能会干扰生物学研究。相比之下,在细胞中瞬时表达锌指核酸酶(ZFN)可以高效地促进精确的、可遗传的基因编辑,而无需施用化学物质或整合合成转基因。锌指核酸酶(ZFN)是一种能结合并切割双链DNA(dsDNA)特定序列的酶。一个功能性的CompoZr ZFN单元由两个单独的单体蛋白组成,它们结合大约15 - 18个核苷酸的DNA“半位点”(见图1)。当两个ZFN单体“归巢”到它们相邻的靶位点时,DNA切割结构域二聚化并在DNA中产生双链断裂(DSB)。在基因组中引入ZFN介导的DSB为高效的基因组编辑奠定了基础。细胞通过非同源末端连接(NHEJ)DNA修复途径对DSB进行不完全修复可导致小的插入和缺失(indels)。在细胞的基因编码序列内产生indels可导致移码并随后高效地敲除基因座的功能。虽然本方案描述了使用ZFN来创建基因敲除,但也可以通过在ZFN切割位点的同源定向修复来进行转基因整合。CompoZr定制ZFN服务代表了一种系统、全面且特征明确的方法,利用ZFN技术为科学界进行靶向基因编辑。西格玛的科学家与研究人员密切合作,以1)进行尽职调查分析,包括根据项目目标分析相关基因结构、生物学和模型系统,2)应用这些知识来制定合理的靶向策略,3)然后设计、构建并在相关细胞系中对ZFN的活性进行功能验证。研究人员会收到阳性对照基因组DNA和引物,以及以质粒DNA和体外转录mRNA形式提供的即用型ZFN试剂。然后可以将这些试剂用于在研究人员选择感兴趣的细胞系或细胞类型中进行瞬时表达。然后通过包括PCR扩增、酶切和电泳在内的标准分子生物学技术,在感兴趣的基因座处检测样品的基因编辑情况。在初始群体中检测到基因编辑的阳性信号后,将细胞进行单细胞克隆并进行基因分型,以鉴定突变克隆/等位基因。