Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2099, USA.
Lab Chip. 2011 Feb 21;11(4):738-42. doi: 10.1039/c0lc00112k. Epub 2010 Dec 6.
The use of polydimethylsiloxane (PDMS) in microfluidic devices is extensive in academic research. One of the most fundamental treatments is to expose PDMS to plasma oxidation in order to render its surface temporarily hydrophilic and capable of permanent bonding. Here, we show that changes in the surface chemistry induced by plasma oxidation can spatially be counteracted very cleanly and reliably in a scalable manner by subsequent microcontact printing of residual oligomers from a PDMS stamp. We characterize the surface modifications through contact angle, atomic force microscopy, X-ray photoelectron spectroscopy, and bond-strength measurements. We utilize this approach for negating the bonding of a flexible membrane layer within an elastomeric valve and demonstrate its effectiveness by integration of over one thousand normally closed elastomeric valves within a single substrate. In addition, we demonstrate that surface energy patterning can be used for "open microfluidic" applications that utilize spatial control of surface wetting.
聚二甲基硅氧烷(PDMS)在微流控设备中的应用在学术研究中非常广泛。其中最基本的处理方法之一是将 PDMS 暴露于等离子体氧化中,以使表面暂时亲水,并能够实现永久键合。在这里,我们展示了通过随后的微接触印刷从 PDMS 印章上残留的低聚物,可以非常干净、可靠且可扩展地抵消等离子体氧化引起的表面化学变化。我们通过接触角、原子力显微镜、X 射线光电子能谱和键强度测量来表征表面修饰。我们将这种方法用于消除弹性阀内柔性膜层的键合,并通过在单个基底内集成一千多个常闭弹性阀来证明其有效性。此外,我们还证明了表面能图案化可用于“开放式微流控”应用,这些应用利用表面润湿性的空间控制。