Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
Structure. 2010 Dec 8;18(12):1678-87. doi: 10.1016/j.str.2010.09.013.
Protein-biomineral interactions are paramount to materials production in biology, including the mineral phase of hard tissue. Unfortunately, the structure of biomineral-associated proteins cannot be determined by X-ray crystallography or solution nuclear magnetic resonance (NMR). Here we report a method for determining the structure of biomineral-associated proteins. The method combines solid-state NMR (ssNMR) and ssNMR-biased computational structure prediction. In addition, the algorithm is able to identify lattice geometries most compatible with ssNMR constraints, representing a quantitative, novel method for investigating crystal-face binding specificity. We use this method to determine most of the structure of human salivary statherin interacting with the mineral phase of tooth enamel. Computation and experiment converge on an ensemble of related structures and identify preferential binding at three crystal surfaces. The work represents a significant advance toward determining structure of biomineral-adsorbed protein using experimentally biased structure prediction. This method is generally applicable to proteins that can be chemically synthesized.
蛋白质-生物矿物相互作用对于生物学中的材料生产至关重要,包括硬组织的矿物相。不幸的是,生物矿物相关蛋白的结构无法通过 X 射线晶体学或溶液核磁共振(NMR)来确定。在这里,我们报告了一种确定生物矿物相关蛋白结构的方法。该方法结合了固态 NMR(ssNMR)和 ssNMR 偏向的计算结构预测。此外,该算法能够识别与 ssNMR 约束最兼容的晶格几何形状,代表了一种定量的、研究晶体面结合特异性的新方法。我们使用该方法确定了与人唾液中牙釉质矿物相互作用的牙本质磷蛋白的大部分结构。计算和实验收敛于相关结构的集合,并确定在三个晶体表面的优先结合。这项工作代表了使用实验偏向的结构预测来确定生物矿物吸附蛋白结构的重大进展。该方法通常适用于可以化学合成的蛋白质。