Kutalik Zoltán, Beckmann Jacques S, Bergmann Sven
Department of Medical Genetics, University of Lausanne, Rue de Bugnon 27 - DGM 328, CH-1005 Lausanne, Switzerland.
Nat Biotechnol. 2008 May;26(5):531-9. doi: 10.1038/nbt1397.
High-throughput technologies are now used to generate more than one type of data from the same biological samples. To properly integrate such data, we propose using co-modules, which describe coherent patterns across paired data sets, and conceive several modular methods for their identification. We first test these methods using in silico data, demonstrating that the integrative scheme of our Ping-Pong Algorithm uncovers drug-gene associations more accurately when considering noisy or complex data. Second, we provide an extensive comparative study using the gene-expression and drug-response data from the NCI-60 cell lines. Using information from the DrugBank and the Connectivity Map databases we show that the Ping-Pong Algorithm predicts drug-gene associations significantly better than other methods. Co-modules provide insights into possible mechanisms of action for a wide range of drugs and suggest new targets for therapy.
高通量技术如今被用于从相同的生物样本中生成不止一种类型的数据。为了恰当地整合这些数据,我们提议使用共模块,其描述了跨配对数据集的连贯模式,并构思了几种用于识别它们的模块化方法。我们首先使用计算机模拟数据测试这些方法,证明在考虑有噪声或复杂的数据时,我们的乒乓算法的整合方案能更准确地揭示药物-基因关联。其次,我们使用来自NCI-60细胞系的基因表达和药物反应数据进行了广泛的比较研究。利用来自药物银行和连通性图谱数据库的信息,我们表明乒乓算法预测药物-基因关联的能力明显优于其他方法。共模块为多种药物的可能作用机制提供了见解,并为治疗提出了新的靶点。