Suppr超能文献

桥联有机硅烷前体制备的周期性介孔有机硅的合成、性质及应用。

Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors.

机构信息

Toyota Central R&D Laboratories, Inc., Nagakute, Aichi 480-1192, Japan.

出版信息

Chem Soc Rev. 2011 Feb;40(2):789-800. doi: 10.1039/c0cs00010h. Epub 2010 Dec 7.

Abstract

Periodic mesoporous organosilicas (PMOs) prepared by surfactant-directed polycondensation of bridged organosilane precursors are promising for a variety of next-generation functional materials, because their large surface areas, well-defined nanoporous structures and the structural diversity of organosilica frameworks are advantageous for functionalization. This critical review highlights the unique structural features of PMOs and their expanding potential applications. Since the early reports of PMOs in 1999, various synthetic approaches, including the selection of hydrolytic reaction conditions, development of new precursor compounds, design of templates and the use of co-condensation or grafting techniques, have enabled the hierarchical structural control of PMOs from molecular- and meso-scale structures to macroscopic morphology. The introduction of functional organic units, such as highly fluorescent π-conjugates and electroactive species, into the PMO framework has opened a new path for the development of fluorescent systems, sensors, charge-transporting materials and solid-state catalysts. Moreover, a combinational materials design approach to the organosilica frameworks, pore wall surfaces and internal parts of mesopores has led to novel luminescent and photocatalytic systems. Their advanced functions have been realized by energy and electron transfer from framework organics to guest molecules or catalytic centers. PMOs, in which the precise design of hierarchical structures and construction of multi-component systems are practicable, have a significant future in a new field of functional materials (93 references).

摘要

周期性介孔有机硅(PMO)是通过桥联有机硅烷前体制备的表面活性剂导向缩聚得到的,对于各种下一代功能材料具有广阔的应用前景,因为它们的大表面积、明确的纳米多孔结构以及有机硅骨架的结构多样性有利于功能化。这篇综述重点介绍了 PMO 的独特结构特征及其不断扩展的潜在应用。自 1999 年首次报道 PMO 以来,通过选择水解反应条件、开发新型前体化合物、设计模板以及使用共缩聚或接枝技术等各种合成方法,实现了 PMO 从分子和介观结构到宏观形态的分级结构控制。将功能有机单元(如高荧光π共轭物和电活性物质)引入 PMO 骨架,为荧光系统、传感器、电荷传输材料和固态催化剂的发展开辟了新途径。此外,对有机硅骨架、孔壁表面和介孔内部进行组合材料设计,得到了新型发光和光催化体系。通过框架有机物向客体分子或催化中心的能量和电子转移,实现了它们的先进功能。在功能材料的新领域,PMO 具有很大的未来前景,因为它可以精确设计分级结构并构建多组分系统(93 篇参考文献)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验