Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health, Amsterdam, the Netherlands.
Department of Health Management and Health Economics, Faculty of Medicine, University of Oslo, Oslo, Norway.
Med Decis Making. 2022 Oct;42(7):956-968. doi: 10.1177/0272989X221100112. Epub 2022 May 19.
Analyzing and communicating uncertainty is essential in medical decision making. To judge whether risks are acceptable, policy makers require information on the expected outcomes but also on the uncertainty and potential losses related to the chosen strategy. We aimed to compare methods used to represent the impact of uncertainty in decision problems involving many strategies, enhance existing methods, and provide an open-source and easy-to-use tool.
We conducted a systematic literature search to identify methods used to represent the impact of uncertainty in cost-effectiveness analyses comparing multiple strategies. We applied the identified methods to probabilistic sensitivity analysis outputs of 3 published decision-analytic models comparing multiple strategies. Subsequently, we compared the following characteristics: type of information conveyed, use of a fixed or flexible willingness-to-pay threshold, output interpretability, and the graphical discriminatory ability. We further proposed adjustments and integration of methods to overcome identified limitations of existing methods.
The literature search resulted in the selection of 9 methods. The 3 methods with the most favorable characteristics to compare many strategies were 1) the cost-effectiveness acceptability curve (CEAC) and cost-effectiveness acceptability frontier (CEAF), 2) the expected loss curve (ELC), and 3) the incremental benefit curve (IBC). The information required to assess confidence in a decision often includes the average loss and the probability of cost-effectiveness associated with each strategy. Therefore, we proposed the integration of information presented in an ELC and CEAC into a single heat map.
This article presents an overview of methods presenting uncertainty in multiple-strategy cost-effectiveness analyses, with their strengths and shortcomings. We proposed a heat map as an alternative method that integrates all relevant information required for health policy and medical decision making.
To assess confidence in a chosen course of action, decision makers require information on both the probability and the consequences of making a wrong decision.This article contains an overview of methods for presenting uncertainty in multiple-strategy cost-effectiveness analyses.We propose a heat map that combines the probability of cost-effectiveness from the cost-effectiveness acceptability curve (CEAC) with the consequences of a wrong decision from the expected loss curve.Collapsing of the CEAC can be reduced by relaxing the CEAC, as proposed in this article.Code in Microsoft Excel and R is provided to easily analyze data using the methods discussed in this article.
在医疗决策中,分析和交流不确定性至关重要。为了判断风险是否可接受,决策者不仅需要了解预期结果的信息,还需要了解与所选策略相关的不确定性和潜在损失。我们旨在比较用于表示涉及多种策略的决策问题中不确定性影响的方法,增强现有方法,并提供一个开源且易于使用的工具。
我们进行了系统的文献检索,以确定用于表示比较多种策略的成本效益分析中不确定性影响的方法。我们将识别出的方法应用于 3 个已发表的决策分析模型的概率敏感性分析结果,这些模型比较了多种策略。随后,我们比较了以下特征:传达的信息类型、使用固定或灵活的支付意愿阈值、输出可解释性和图形区分能力。我们进一步提出了方法的调整和整合,以克服现有方法的局限性。
文献检索导致选择了 9 种方法。在比较多种策略方面,具有最有利特征的 3 种方法是 1)成本效益可接受性曲线(CEAC)和成本效益可接受性边界(CEAF),2)预期损失曲线(ELC),和 3)增量效益曲线(IBC)。评估决策信心所需的信息通常包括与每种策略相关的平均损失和成本效益的概率。因此,我们建议将 ELC 和 CEAC 中呈现的信息整合到单个热图中。
本文概述了用于表示多策略成本效益分析中不确定性的方法,以及它们的优缺点。我们提出了一个热图作为替代方法,该方法整合了医疗决策所需的所有相关信息。
为了评估所选行动方案的信心,决策者需要了解做出错误决策的概率和后果。本文包含了用于呈现多策略成本效益分析中不确定性的方法概述。我们提出了一个热图,该热图将来自成本效益可接受性曲线(CEAC)的成本效益概率与来自预期损失曲线(ELC)的错误决策后果相结合。通过放宽 CEAC,如本文所述,可以减少 CEAC 的折叠。本文提供了在 Microsoft Excel 和 R 中使用讨论的方法轻松分析数据的代码。