Suppr超能文献

阿片类物质使用障碍模拟模型的经验校准

Empirical calibration of a simulation model of opioid use disorder.

作者信息

Madushani R W M A, Wang Jianing, Weitz Michelle, Linas Benjamin P, White Laura F, Chrysanthopoulou Stavroula A

机构信息

Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts, United States of America.

Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America.

出版信息

PLoS One. 2025 Mar 27;20(3):e0310763. doi: 10.1371/journal.pone.0310763. eCollection 2025.

Abstract

BACKGROUND

Simulation models of opioid use disorder (OUD) aim at evaluating the impact of different treatment strategies on population-level outcomes. Researching Effective Strategies to Prevent Opioid Death (RESPOND) is a dynamic population, state-transition model that simulates the Massachusetts OUD population synthesizing data from multiple sources. Structural complexity and scarcity of available data for opioid modeling pose a special challenge to model calibration. We propose an empirical calibration approach applicable to complex simulation models in general.

METHODS

We implement an empirical approach to calibrate RESPOND to multiple targets: annual fatal opioid-related overdoses, detox admissions, and OUD population sizes. The empirical calibration involves Latin hypercube sampling for searching a multidimensional parameter space comprising arrivals, overdose rates, treatment transition rates, and substance use state transition probabilities. The algorithm accepts proposed parameters when the respective model outputs lie within pre-determined target uncertainty ranges. This is an iterative process resulting in a set of parameter values for which the model closely fits all the calibration targets. We validated the model assessing its accuracy to projections important for shared decision-making of OUD outside the training data.

RESULTS

The empirical calibration resulted in a model that fits well both calibration and validation targets. The flexibility of the algorithm allowed us to explore structural and parameter uncertainty, reveal underlying relationships between model parameters and identify areas of model improvement for a more accurate representation of the OUD dynamics.

DISCUSSION

The proposed empirical calibration approach is an efficient tool for approximating parameter distributions of complex models, especially under complete uncertainty. Empirically calibrated parameters can be used as a starting point for a more comprehensive calibration exercise, e.g., to inform priors of a Bayesian calibration. The calibrated RESPOND model can be used to improve shared decision-making for OUD.

摘要

背景

阿片类物质使用障碍(OUD)的模拟模型旨在评估不同治疗策略对人群水平结局的影响。研究预防阿片类物质死亡的有效策略(RESPOND)是一个动态人群状态转换模型,它综合多个来源的数据模拟马萨诸塞州的OUD人群。阿片类物质建模的结构复杂性和可用数据的稀缺性给模型校准带来了特殊挑战。我们提出一种一般适用于复杂模拟模型的经验校准方法。

方法

我们采用一种经验方法将RESPOND校准到多个目标:年度阿片类物质相关过量致死、戒毒入院以及OUD人群规模。经验校准涉及拉丁超立方抽样,以搜索包含入组率、过量使用率、治疗转换率和物质使用状态转换概率的多维参数空间。当相应的模型输出落在预先确定的目标不确定性范围内时,算法接受提议的参数。这是一个迭代过程,产生一组参数值,对于这些参数值,模型紧密拟合所有校准目标。我们通过评估模型对训练数据之外对OUD共同决策重要的预测的准确性来验证模型。

结果

经验校准产生了一个对校准和验证目标拟合良好的模型。算法的灵活性使我们能够探索结构和参数不确定性,揭示模型参数之间的潜在关系,并识别模型改进的领域,以便更准确地呈现OUD动态。

讨论

所提出的经验校准方法是一种近似复杂模型参数分布的有效工具,尤其是在完全不确定性的情况下。经验校准的参数可作为更全面校准练习的起点,例如为贝叶斯校准提供先验信息。校准后的RESPOND模型可用于改善OUD的共同决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cba0/11949371/a91b93779d54/pone.0310763.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验