Department of Molecular and Cellular Physiology, Stanford University, 1050 Arastradero Road, Palo Alto, CA 94304-5543, USA.
Neuron. 2010 Dec 9;68(5):907-20. doi: 10.1016/j.neuron.2010.11.001.
Complexin activates and clamps neurotransmitter release; impairing complexin function decreases synchronous, but increases spontaneous and asynchronous synaptic vesicle exocytosis. Here, we show that complexin-different from the Ca(2+) sensor synaptotagmin-1-activates synchronous exocytosis by promoting synaptic vesicle priming, but clamps spontaneous and asynchronous exocytosis-similar to synaptotagmin-1-by blocking a secondary Ca(2+) sensor. Activation and clamping functions of complexin depend on distinct, autonomously acting sequences, namely its N-terminal region and accessory α helix, respectively. Mutations designed to test whether the accessory α helix of complexin clamps exocytosis by inserting into SNARE-complexes support this hypothesis, suggesting that the accessory α helix blocks completion of trans-SNARE-complex assembly until Ca(2+) binding to synaptotagmin relieves this block. Moreover, a juxtamembranous mutation in the SNARE-protein synaptobrevin-2, which presumably impairs force transfer from nascent trans-SNARE complexes onto fusing membranes, also unclamps spontaneous fusion by disinhibiting a secondary Ca(2+) sensor. Thus, complexin performs mechanistically distinct activation and clamping functions that operate in conjunction with synaptotagmin-1 by controlling trans-SNARE-complex assembly.
复合蛋白激活并固定神经递质释放;削弱复合蛋白的功能会减少同步释放,但会增加自发和异步的突触小泡胞吐。在这里,我们发现,复合蛋白与钙传感器突触融合蛋白 1 不同,它通过促进突触小泡的初始化为同步胞吐提供动力,但通过阻断辅助钙传感器,来固定自发和异步的胞吐——类似于突触融合蛋白 1。复合蛋白的激活和固定功能依赖于不同的、自主作用的序列,分别是其 N 端区域和辅助α螺旋。为了测试复合蛋白的辅助α螺旋是否通过插入 SNARE 复合物来固定胞吐而设计的突变,支持了这一假设,表明辅助α螺旋阻止了跨 SNARE 复合物组装的完成,直到钙结合到突触融合蛋白上,从而解除这种阻断。此外,SNARE 蛋白突触融合蛋白 2 的一个膜旁突变,推测会削弱从新生的跨 SNARE 复合物向融合膜传递的力,也通过抑制辅助钙传感器来解除自发融合的抑制。因此,复合蛋白通过控制跨 SNARE 复合物的组装,发挥了与突触融合蛋白 1 协同作用的、具有不同机械特性的激活和固定功能。