Suppr超能文献

具有异质连接的可激发神经网络动力学。

Dynamics of excitable neural networks with heterogeneous connectivity.

机构信息

CNRS UMR-7225, Hôpital de la Salpêtrière, 47 Bd. de l'Hôpital, 75013 Paris, France.

出版信息

Prog Biophys Mol Biol. 2011 Mar;105(1-2):29-33. doi: 10.1016/j.pbiomolbio.2010.11.002. Epub 2010 Dec 8.

Abstract

A central issue of neuroscience is to understand how neural units integrates internal and external signals to create coherent states. Recently, it has been shown that the sensitivity and dynamic range of neural assemblies are optimal at a critical coupling among its elements. Complex architectures of connections seem to play a constructive role on the reliable coordination of neural units. Here we show that, the synchronizability and sensitivity of excitable neural networks can be tuned by diversity in the connections strengths. We illustrate our findings for weighted networks with regular, random and complex topologies. Additional comparisons of real brain networks support previous studies suggesting that heterogeneity in the connectivity may play a constructive role on information processing. These findings provide insights into the relationship between structure and function of neural circuits.

摘要

神经科学的一个核心问题是理解神经单元如何整合内部和外部信号以产生连贯的状态。最近,已经表明,在其元素之间的临界耦合下,神经组件的灵敏度和动态范围是最佳的。连接的复杂结构似乎在神经单元的可靠协调中发挥了建设性作用。在这里,我们表明,兴奋性神经网络的同步性和灵敏度可以通过连接强度的多样性来调节。我们用规则、随机和复杂拓扑的加权网络来说明我们的发现。对真实脑网络的额外比较支持了先前的研究,表明连接的异质性可能在信息处理中发挥建设性作用。这些发现为神经回路的结构和功能之间的关系提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验