Suppr超能文献

中国珠江三角洲三个地区空气中细颗粒物的多准则排名和受体建模。

Multi-criteria ranking and receptor modelling of airborne fine particles at three sites in the Pearl River Delta region of China.

机构信息

International Laboratory for Air Quality and Health, Discipline of Chemistry, Queensland University of Technology, 2 George Street, QLD 4001, Australia.

出版信息

Sci Total Environ. 2011 Jan 15;409(4):719-37. doi: 10.1016/j.scitotenv.2010.11.008. Epub 2010 Dec 10.

Abstract

The multi-criteria decision making methods, Preference Ranking Organization METHods for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA), and the two-way Positive Matrix Factorization (PMF) receptor model were applied to airborne fine particle compositional data collected at three sites in Hong Kong during two monitoring campaigns held from November 2000 to October 2001 and November 2004 to October 2005. PROMETHEE/GAIA indicated that the three sites were worse during the later monitoring campaign, and that the order of the air quality at the sites during each campaign was: rural site>urban site>roadside site. The PMF analysis on the other hand, identified 6 common sources at all of the sites (diesel vehicle, fresh sea salt, secondary sulphate, soil, aged sea salt and oil combustion) which accounted for approximately 68.8±8.7% of the fine particle mass at the sites. In addition, road dust, gasoline vehicle, biomass burning, secondary nitrate, and metal processing were identified at some of the sites. Secondary sulphate was found to be the highest contributor to the fine particle mass at the rural and urban sites with vehicle emission as a high contributor to the roadside site. The PMF results are broadly similar to those obtained in a previous analysis by PCA/APCS. However, the PMF analysis resolved more factors at each site than the PCA/APCS. In addition, the study demonstrated that combined results from multi-criteria decision making analysis and receptor modelling can provide more detailed information that can be used to formulate the scientific basis for mitigating air pollution in the region.

摘要

多准则决策方法、偏好排序组织方法(PROMETHEE)和图形分析交互辅助(GAIA)以及双向正矩阵因子分解(PMF)受体模型应用于在香港三个地点采集的空气中细颗粒成分数据,这些数据是在 2000 年 11 月至 2001 年 10 月和 2004 年 11 月至 2005 年 10 月进行的两次监测活动中收集的。PROMETHEE/GAIA 表明,在后期监测活动中,三个地点的情况更糟,并且在每次活动期间,这些地点的空气质量顺序为:农村地区>城市地区>路边地区。另一方面,PMF 分析在所有地点都识别出 6 个共同来源(柴油车、新鲜海盐、二次硫酸盐、土壤、老化海盐和燃油燃烧),这些来源占这些地点细颗粒物质量的约 68.8±8.7%。此外,在一些地点还识别出道路尘埃、汽油车、生物质燃烧、二次硝酸盐和金属加工。在农村和城市地区,发现二次硫酸盐是细颗粒质量的最高贡献者,而车辆排放则是路边地区的主要贡献者。PMF 结果与 PCA/APCS 之前的分析结果大致相似。然而,PMF 分析在每个地点解析的因素比 PCA/APCS 更多。此外,该研究表明,多准则决策分析和受体建模的综合结果可以提供更详细的信息,可用于为该地区的缓解空气污染制定科学依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验