Lemaréchal Jean-Didier, Triebkorn Paul, Vattikonda Anirudh Nihalani, Hashemi Meysam, Woodman Marmaduke, Guye Maxime, Bartolomei Fabrice, Wang Huifang E, Jirsa Viktor
Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille, France.
Aix-Marseille Université, CNRS, CRMBM, Marseille, France.
Imaging Neurosci (Camb). 2024 May 8;2. doi: 10.1162/imag_a_00153. eCollection 2024.
Digital twins play an increasing role in clinical decision making. This study evaluates a digital brain twin approach in presurgical evaluation, the Virtual Epileptic Patient (VEP), which estimates the epileptogenic zone in patients with drug-resistant epilepsy. We built the personalized digital brain twins of 14 patients and a series of synthetic dataset by considering different spatial configurations of the epileptogenic and/or propagation zone networks (EZN and PZN, respectively). Brain source signals were simulated with a high spatial resolution neural field model (NFM) composed of 81942 nodes, embedding both long-range (between brain regions) and short-range (within brain regions) coupling. Brain signals were then projected to stereotactic electroencephalographic (SEEG) contacts with an accurate forward solution. An inversion procedure based on a low spatial resolution neural mass model (NMM) composed of 162 nodes was applied to estimate the excitability of each region in each simulation. The ensuing estimated EZN/PZN was compared to the simulated ground truth by means of classification metrics. Overall, we observed correct but degraded performance when using an NMM to estimate the EZN from data simulated with an NFM, which was significant for the simplest spatial configurations. We quantified the reduced performance and demonstrated that the oversimplification of the forward problem is its principal cause. We showed that the absence of local coupling in the NMM affects the inversion process by an overestimation of the excitability, representing a significant clinical impact when using this procedure in the context of presurgical planning. In conclusion, this study highlighted the importance to shift from an NMM towards a full NFM modeling approach for the estimation of EZN, with a particularly relevant need when considering the most complex clinical cases.
数字孪生在临床决策中发挥着越来越重要的作用。本研究评估了一种用于术前评估的数字脑孪生方法——虚拟癫痫患者(VEP),该方法可估计耐药性癫痫患者的致痫区。我们通过考虑致痫区和/或传播区网络(分别为EZN和PZN)的不同空间配置,构建了14名患者的个性化数字脑孪生以及一系列合成数据集。使用由81942个节点组成的高空间分辨率神经场模型(NFM)模拟脑源信号,该模型嵌入了长程(脑区之间)和短程(脑区内)耦合。然后,通过精确的正向解将脑信号投影到立体定向脑电图(SEEG)触点上。应用基于由162个节点组成的低空间分辨率神经质量模型(NMM)的反演程序,来估计每个模拟中每个区域的兴奋性。通过分类指标将随后估计的EZN/PZN与模拟的真实情况进行比较。总体而言,当使用NMM从由NFM模拟的数据中估计EZN时,我们观察到性能正确但有所下降,这在最简单的空间配置中很明显。我们对性能下降进行了量化,并证明正向问题的过度简化是其主要原因。我们表明,NMM中缺乏局部耦合会通过兴奋性的高估影响反演过程,这在术前规划的背景下使用该程序时具有重大临床影响。总之,本研究强调了从NMM转向全NFM建模方法来估计EZN的重要性,在考虑最复杂的临床病例时尤其如此。
Imaging Neurosci (Camb). 2024-5-8
2025-1
Clin Orthop Relat Res. 2024-9-1
Cochrane Database Syst Rev. 2023-1-23
Lancet Neurol. 2023-5
Brain. 2022-11-21