Kayabas Mehmet Alihan, Köksal Ersöz Elif, Yochum Maxime, Bartolomei Fabrice, Benquet Pascal, Wendling Fabrice
INSERM, LTSI U1099, Université de Rennes, Rennes, France.
Epileptology and Cerebral Rhythmology, Timone Hospital, APHM, Marseille, France.
Epilepsia. 2024 Dec;65(12):3619-3630. doi: 10.1111/epi.18173. Epub 2024 Oct 30.
For the pre-surgical evaluation of patients with drug-resistant focal epilepsy, stereo-electroencephalographic (SEEG) signals are routinely recorded to identify the epileptogenic zone network (EZN). This network consists of remote brain regions involved in seizure initiation. However, the pathophysiological mechanisms underlying typical SEEG patterns that occur during the transition from interictal to ictal activity in distant brain nodes of the EZN remain poorly understood. The primary aim is to identify and explain these mechanisms using a novel physiologically-plausible model of the EZN.
We analyzed SEEG signals recorded from the EZN in 10 patients during the transition from interictal to ictal activity. This transition consisted of a sequence of periods during which SEEG signals from distant neocortical regions showed stereotypical patterns of activity: sustained preictal spiking activity preceding a fast activity occurring at seizure onset, followed by the ictal activity. Spectral content and non-linear correlation of SEEG signals were analyzed. In addition, we developed a novel neuro-inspired computational model consisting of bidirectionally coupled neuronal populations.
The proposed model captured the essential characteristics of the patient signals, including the quasi-synchronous onset of rapid discharges in distant interconnected epileptogenic zones. Statistical analysis confirmed the dynamic correlation/de-decorrelation pattern observed in the patient signals and accurately reproduced in the simulated signals.
This study provides insight into the abnormal dynamic changes in glutamatergic and γ-aminobutyric acid (GABA)ergic synaptic transmission that occur during the transition to seizures. The results strongly support the hypothesis that bidirectional connections between distant neuronal populations of the EZN (from pyramidal cells to vaso-intestinal peptide-positive interneurons) play a key role in this transition, while parvalbumin-positive interneurons intervene in the emergence of rapid discharges at seizure onset.
对于耐药性局灶性癫痫患者的术前评估,常规记录立体脑电图(SEEG)信号以识别致痫区网络(EZN)。该网络由参与癫痫发作起始的远隔脑区组成。然而,在EZN远隔脑节点从发作间期到发作期活动转变过程中出现的典型SEEG模式的病理生理机制仍知之甚少。主要目的是使用一种新的具有生理合理性的EZN模型来识别和解释这些机制。
我们分析了10例患者在从发作间期到发作期活动转变过程中从EZN记录的SEEG信号。这种转变由一系列时期组成,在此期间来自远隔新皮质区域的SEEG信号呈现出刻板的活动模式:在发作起始时快速活动之前有持续的发作前期棘波活动,随后是发作期活动。分析了SEEG信号的频谱内容和非线性相关性。此外,我们开发了一种由双向耦合神经元群体组成的新型神经启发式计算模型。
所提出的模型捕捉到了患者信号的基本特征,包括远隔相互连接的致痫区快速放电的准同步起始。统计分析证实了在患者信号中观察到并在模拟信号中准确再现的动态相关/去相关模式。
本研究深入了解了在向癫痫发作转变过程中谷氨酸能和γ-氨基丁酸(GABA)能突触传递的异常动态变化。结果有力支持了以下假设:EZN远隔神经元群体之间的双向连接(从锥体细胞到血管活性肠肽阳性中间神经元)在这种转变中起关键作用,而小白蛋白阳性中间神经元在发作起始时快速放电的出现中起干预作用。