Suppr超能文献

基于嵌段共聚物的组成和形态控制在用于能量转换和存储的纳米结构杂化材料中的应用:太阳能电池、电池和燃料电池。

Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells.

机构信息

Cornell University, Ithaca, NY 14853, USA.

出版信息

Chem Soc Rev. 2011 Feb;40(2):520-35. doi: 10.1039/c0cs00034e. Epub 2010 Dec 13.

Abstract

The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramic-carbon composites, ceramic-carbon-metal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.

摘要

能源转换和存储设备的发展是面向可持续未来的研究前沿。然而,有许多问题阻止了这些技术的广泛应用,包括成本、性能和耐久性。这些限制可以直接与所使用的材料有关。特别是,设计和制造纳米结构的杂化材料有望为这些技术的发展提供突破。本教程综述将重点介绍嵌段共聚物作为一种新兴的、强大的、且价格合理的工具,用于通过对结构尺寸、复合材料中材料的组成和空间排列进行精确控制来结构化这些纳米材料。在介绍材料设计和当前的局限性之后,本综述将重点介绍一些最近在用于光伏、电池和燃料电池的嵌段共聚物结构导向纳米材料方面的例子。在每种情况下,都提供了对各种基本化学、热力学和动力学形成原理的深入了解,这些原理使通用且相对便宜的湿聚合化学方法能够有效地创造多尺度功能材料。例子包括纳米结构陶瓷、陶瓷-碳复合材料、陶瓷-碳-金属复合材料和具有从六边形排列的圆柱体到三维双连续立方网络的形态的金属。本综述以展望多组分和分层多功能杂化材料的合成结束,这些材料具有不同的纳米结构,来自于更高阶嵌段大分子的自组装,这可能最终为能源转换和存储设备的进一步发展铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验