Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Angew Chem Int Ed Engl. 2010 Dec 17;49(51):9838-52. doi: 10.1002/anie.200906211.
Metamaterials have become one of the hottest fields of photonics since the pioneering work of John Pendry on negative refractive index, invisibility cloaking, and perfect lensing. Three-dimensional metamaterials are required for practical applications. In these materials, coupling effects between individual constituents play a dominant role for the optical and electronic properties. Metamaterials can show both electric and magnetic responses at optical frequencies. Thus, electric as well as magnetic dipolar and higher-order multipolar coupling is the essential mechanism. Depending on the structural composition, both longitudinal and transverse coupling occur. The intricate interplay between different coupling effects in a plasmon hybridization picture provides a useful tool to intuitively understand the evolution from molecule-like states to solid-state-like bands.
超材料在 John Pendry 关于负折射、隐形斗篷和完美透镜的开创性工作之后,成为光子学领域最热门的领域之一。对于实际应用来说,需要三维超材料。在这些材料中,各组成部分之间的耦合效应对光学和电子性质起着主导作用。超材料可以在光频下表现出电和磁响应。因此,电偶极子和更高阶多极子的磁偶极子耦合是基本机制。根据结构组成,既有纵向耦合也有横向耦合。在等离子体杂化图中不同耦合效应的错综复杂相互作用提供了一个有用的工具,可以直观地理解从分子态到固态能带的演变。