Suppr超能文献

鉴定反式剪接基因的转录起始位点:揭示不寻常的操纵子排列。

Identification of transcription start sites of trans-spliced genes: uncovering unusual operon arrangements.

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.

出版信息

RNA. 2011 Feb;17(2):327-37. doi: 10.1261/rna.2447111. Epub 2010 Dec 14.

Abstract

In Caenorhabditis elegans, the transcripts of many genes are trans-spliced to an SL1 spliced leader, a process that removes the RNA extending from the transcription start site to the trans-splice site, thereby making it difficult to determine the position of the promoter. Here we use RT-PCR to identify promoters of trans-spliced genes. Many genes in C. elegans are organized in operons where genes are closely clustered, typically separated by only ~100 nucleotides, and transcribed by an upstream promoter. The transcripts of downstream genes are trans-spliced to an SL2 spliced leader. The polycistronic precursor RNA is processed into individual transcripts by 3' end formation and trans-splicing. Although the SL2 spliced leader does not appear to be used for other gene arrangements, there is a relatively small number of genes whose transcripts are processed by SL2 but are not close to another gene in the same orientation. Although these genes do not appear to be members of classical C. elegans operons, we investigated whether these might represent unusual operons with long spacing or a different, nonoperon mechanism for specifying SL2 trans-splicing. We show transcription of the entire region between the SL2 trans-spliced gene and the next upstream gene, sometimes several kilobases distant, suggesting that these represent exceptional operons. We also report a second type of atypical "alternative" operon, in which 3' end formation and trans-splicing by SL2 occur within an intron. In this case, the processing sometimes results in a single transcript, and sometimes in two separate mRNAs.

摘要

在秀丽隐杆线虫中,许多基因的转录物通过反式剪接与 SL1 拼接前导 RNA 拼接,这个过程去除了从转录起始位点延伸到反式剪接位点的 RNA,从而难以确定启动子的位置。在这里,我们使用 RT-PCR 来鉴定反式剪接基因的启动子。秀丽隐杆线虫中的许多基因都组织在操纵子中,这些基因紧密聚集,通常只间隔约 100 个核苷酸,由上游启动子转录。下游基因的转录物通过 SL2 拼接前导 RNA 进行反式剪接。多顺反子前体 RNA 通过 3' 端形成和反式剪接加工成单个转录物。虽然 SL2 拼接前导 RNA 似乎不用于其他基因排列,但有一小部分基因的转录物通过 SL2 加工,但与同一方向的另一个基因不接近。虽然这些基因似乎不是经典秀丽隐杆线虫操纵子的成员,但我们研究了这些基因是否代表具有长间隔的不寻常操纵子,或者是用于指定 SL2 反式剪接的不同非操纵子机制。我们显示了在 SL2 反式剪接基因和下一个上游基因之间的整个区域的转录,有时距离可达几个千碱基,这表明这些基因代表了异常的操纵子。我们还报告了第二种类型的非典型“替代”操纵子,其中 SL2 通过 3' 端形成和反式剪接发生在内含子中。在这种情况下,加工有时会产生单个转录物,有时会产生两个独立的 mRNA。

相似文献

1
2
Resolution of polycistronic RNA by SL2 -splicing is a widely conserved nematode trait.
RNA. 2020 Dec;26(12):1891-1904. doi: 10.1261/rna.076414.120. Epub 2020 Sep 4.
3
C. elegans sequences that control trans-splicing and operon pre-mRNA processing.
RNA. 2007 Sep;13(9):1409-26. doi: 10.1261/rna.596707. Epub 2007 Jul 13.
4
A global analysis of C. elegans trans-splicing.
Genome Res. 2011 Feb;21(2):255-64. doi: 10.1101/gr.113811.110. Epub 2010 Dec 22.
5
Trans-splicing and operons in C. elegans.
WormBook. 2012 Nov 20:1-11. doi: 10.1895/wormbook.1.5.2.
6
A global analysis of Caenorhabditis elegans operons.
Nature. 2002 Jun 20;417(6891):851-4. doi: 10.1038/nature00831.
7
SL1 trans splicing and 3'-end formation in a novel class of Caenorhabditis elegans operon.
Mol Cell Biol. 1999 Jan;19(1):376-83. doi: 10.1128/MCB.19.1.376.
8
Trans-splicing and operons.
WormBook. 2005 Jun 25:1-9. doi: 10.1895/wormbook.1.5.1.
9
Operon conservation and the evolution of trans-splicing in the phylum Nematoda.
PLoS Genet. 2006 Nov 24;2(11):e198. doi: 10.1371/journal.pgen.0020198. Epub 2006 Oct 9.
10
Operons are a conserved feature of nematode genomes.
Genetics. 2014 Aug;197(4):1201-11. doi: 10.1534/genetics.114.162875. Epub 2014 Jun 14.

引用本文的文献

2
mRNA Editing, Processing and Quality Control in .
Genetics. 2020 Jul;215(3):531-568. doi: 10.1534/genetics.119.301807.
3
A high-throughput screen for the identification of compounds that inhibit nematode gene expression by targeting spliced leader trans-splicing.
Int J Parasitol Drugs Drug Resist. 2019 Aug;10:28-37. doi: 10.1016/j.ijpddr.2019.04.001. Epub 2019 Apr 5.
5
Operons are a conserved feature of nematode genomes.
Genetics. 2014 Aug;197(4):1201-11. doi: 10.1534/genetics.114.162875. Epub 2014 Jun 14.
6
RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases.
Nucleus. 2014 May-Jun;5(3):224-36. doi: 10.4161/nucl.29347. Epub 2014 May 30.
7
Transcriptional regulation of gene expression in C. elegans.
WormBook. 2013 Jun 4:1-34. doi: 10.1895/wormbook.1.45.2.
9
The transcription start site landscape of C. elegans.
Genome Res. 2013 Aug;23(8):1348-61. doi: 10.1101/gr.151571.112. Epub 2013 May 1.

本文引用的文献

1
A global analysis of C. elegans trans-splicing.
Genome Res. 2011 Feb;21(2):255-64. doi: 10.1101/gr.113811.110. Epub 2010 Dec 22.
2
Formation, regulation and evolution of Caenorhabditis elegans 3'UTRs.
Nature. 2011 Jan 6;469(7328):97-101. doi: 10.1038/nature09616. Epub 2010 Nov 17.
3
Polycistronic pre-mRNA processing in vitro: snRNP and pre-mRNA role reversal in trans-splicing.
Genes Dev. 2010 Aug 1;24(15):1645-58. doi: 10.1101/gad.1940010. Epub 2010 Jul 12.
5
The landscape of C. elegans 3'UTRs.
Science. 2010 Jul 23;329(5990):432-5. doi: 10.1126/science.1191244. Epub 2010 Jun 3.
6
Regulation of transcription termination in the nematode Caenorhabditis elegans.
Nucleic Acids Res. 2009 Nov;37(20):6723-36. doi: 10.1093/nar/gkp744. Epub 2009 Sep 9.
7
RNA Pol II accumulates at promoters of growth genes during developmental arrest.
Science. 2009 Apr 3;324(5923):92-4. doi: 10.1126/science.1169628. Epub 2009 Feb 26.
8
Massively parallel sequencing of the polyadenylated transcriptome of C. elegans.
Genome Res. 2009 Apr;19(4):657-66. doi: 10.1101/gr.088112.108. Epub 2009 Jan 30.
9
The genomic distribution and function of histone variant HTZ-1 during C. elegans embryogenesis.
PLoS Genet. 2008 Sep 12;4(9):e1000187. doi: 10.1371/journal.pgen.1000187.
10
Identification and analysis of internal promoters in Caenorhabditis elegans operons.
Genome Res. 2007 Oct;17(10):1478-85. doi: 10.1101/gr.6824707. Epub 2007 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验