Suppr超能文献

基于影像的高通量筛选在抗血管生成药物研发中的应用。

Imaged-based high-throughput screening for anti-angiogenic drug discovery.

机构信息

Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.

出版信息

Curr Pharm Des. 2010;16(35):3958-63. doi: 10.2174/138161210794455030.

Abstract

Recent developments in high-content screening (HCS) technologies make it an attractive alternative for anti-angiogenic drug discovery. HCS integrates high-throughput methodologies with automated multicolor fluorescence microscopy to collect quantitative morphological and molecular data from complex biological systems. Organotypic systems based on primary vascular cells model many facets of angiogenesis. The adaptation of these complex in vitro assay systems to high-throughput HCS formats with automated image acquisition enables large-scale chemical library screening campaigns. These HCS principles can be extended further to allow small molecule compounds in in vivo model organisms such as zebrafish. In this review we discuss the latest developments within automated image-based high-throughput screening of chemical libraries for anti-angiogenic compounds.

摘要

近年来高通量筛选(HCS)技术的发展使其成为抗血管生成药物发现的一种有吸引力的选择。HCS 将高通量方法与自动化多色荧光显微镜相结合,从复杂的生物系统中收集定量形态学和分子数据。基于原代血管细胞的器官型系统模拟了血管生成的许多方面。这些复杂的体外测定系统适应高通量 HCS 格式和自动化图像采集,可以进行大规模的化学文库筛选。这些 HCS 原理可以进一步扩展到允许小分子化合物在斑马鱼等体内模型生物中使用。在这篇综述中,我们讨论了用于抗血管生成化合物的化学文库自动化基于图像的高通量筛选的最新进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验