Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
Drug Discov Today. 2020 Aug;25(8):1348-1361. doi: 10.1016/j.drudis.2020.06.001. Epub 2020 Jun 16.
While target-based drug discovery strategies rely on the precise knowledge of the identity and function of the drug targets, phenotypic drug discovery (PDD) approaches allow the identification of novel drugs based on knowledge of a distinct phenotype. Image-based high-content screening (HCS) is a potent PDD strategy that characterizes small-molecule effects through the quantification of features that depict cellular changes among or within cell populations, thereby generating valuable data sets for subsequent data analysis. However, these data can be complex, making image analysis from large HCS campaigns challenging. Technological advances in image acquisition, processing, and analysis as well as machine-learning (ML) approaches for the analysis of multidimensional data sets have rendered HCS as a viable technology for small-molecule drug discovery. Here, we discuss HCS concepts, current workflows as well as opportunities and challenges of image-based phenotypic screening and data analysis.
虽然基于靶点的药物发现策略依赖于对药物靶点的身份和功能的精确了解,但表型药物发现(PDD)方法允许根据对明显表型的了解来鉴定新的药物。基于图像的高通量筛选(HCS)是一种强大的 PDD 策略,它通过定量描述细胞群体之间或内部的细胞变化的特征来描述小分子的作用,从而为后续数据分析生成有价值的数据集。然而,这些数据可能很复杂,使得从大型 HCS 活动中进行图像分析具有挑战性。图像采集、处理和分析方面的技术进步以及用于分析多维数据集的机器学习(ML)方法使 HCS 成为小分子药物发现的可行技术。在这里,我们讨论 HCS 的概念、当前的工作流程以及基于图像的表型筛选和数据分析的机会和挑战。