Chang Jui-Chih, Kou Shou-Jen, Lin Wei-Ting, Liu Chin-San
Jui-Chih Chang, Wei-Ting Lin, Chin-San Liu, Department of Neurology, Vascular and Genomic Center, Changhua Christian Hospital, Changhua 50094, Taiwan, China.
World J Cardiol. 2010 Jun 26;2(6):150-9. doi: 10.4330/wjc.v2.i6.150.
Mitochondrial physiology and biogenesis play a crucial role in the initiation and progression of cardiovascular disease following oxidative stress-induced damage such as atherosclerosis (AST). Dysfunctional mitochondria caused by an increase in mitochondrial reactive oxygen species (ROS) production, accumulation of mitochondrial DNA damage, and respiratory chain deficiency induces death of endothelial/smooth muscle cells and favors plaque formation/rupture via the regulation of mitochondrial biogenesis-related genes such as peroxisome proliferator-activated receptor γ coactivator (PGC-1), although more detailed mechanisms still need further study. Based on the effect of healthy mitochondria produced by mitochondrial biogenesis on decreasing ROS-mediated cell death and the recent finding that the regulation of PGC-1 involves mitochondrial fusion-related protein (mitofusin), we thus infer the regulatory role of mitochondrial fusion/fission balance in AST pathophysiology. In this review, the first section discusses the possible association between AST-inducing factors and the molecular regulatory mechanisms of mitochondrial biogenesis and dynamics, and explains the role of mitochondria-dependent regulation in cell apoptosis during AST development. Furthermore, nitric oxide has the Janus-faced effect by protecting vascular damage caused by AST while being a reactive nitrogen species (RNS) which act together with ROS to damage cells. Therefore, in the second section we discuss mitochondrial ATP-sensitive K(+) channels, which regulate mitochondrial ion transport to maintain mitochondrial physiology, involved in the regulation of ROS/RNS production and their influence on AST/cardiovascular diseases (CVD). Through this review, we can further appreciate the multi-regulatory functions of the mitochondria involved in AST development. The understanding of these related mechanisms will benefit drug development in treating AST/CVD through targeted biofunctions of mitochondria.
线粒体生理学和生物合成在氧化应激诱导的损伤(如动脉粥样硬化,AST)后心血管疾病的发生和发展中起着至关重要的作用。线粒体活性氧(ROS)生成增加、线粒体DNA损伤积累和呼吸链缺陷导致的线粒体功能障碍会诱导内皮细胞/平滑肌细胞死亡,并通过调节线粒体生物合成相关基因(如过氧化物酶体增殖物激活受体γ共激活因子,PGC-1)促进斑块形成/破裂,尽管更详细的机制仍需进一步研究。基于线粒体生物合成产生的健康线粒体对减少ROS介导的细胞死亡的作用,以及最近发现PGC-1的调节涉及线粒体融合相关蛋白(线粒体融合蛋白),我们由此推断线粒体融合/裂变平衡在AST病理生理学中的调节作用。在这篇综述中,第一部分讨论了AST诱导因子与线粒体生物合成和动力学的分子调节机制之间的可能关联,并解释了线粒体依赖性调节在AST发展过程中细胞凋亡中的作用。此外,一氧化氮具有两面性,它既能保护由AST引起的血管损伤,同时又是一种活性氮(RNS),可与ROS共同作用损伤细胞。因此,在第二部分中,我们讨论了线粒体ATP敏感性钾(K(+))通道,它调节线粒体离子转运以维持线粒体生理学,参与ROS/RNS生成的调节及其对AST/心血管疾病(CVD)的影响。通过这篇综述,我们可以进一步认识到线粒体在AST发展中所涉及的多种调节功能。对这些相关机制的理解将有助于通过线粒体的靶向生物功能开发治疗AST/CVD的药物。